Automated tight Lyapunov analysis for first-order methods

Manu Upadhyaya
manu.upadhyaya@control.lth.se
Lund University
Department of Automatic Control

Collaborators:

Sebastian Banert

Adrien Taylor

Pontus Giselsson

SIAM conference on computational science and engineering (CSE23) - 2023-02-28

Synopsis

- A methodology for establishing convergence for first-order methods, based on quadratic Lyapunov inequalities
- Convex optimization problems
- Algorithms in state-space form. General enough to cover many first-order methods
- Provide necessary and sufficient conditions for verifying that quadratic Lyapunov inequality exists for the algorithm and problem class under consideration
- Amounts to the feasibility of a small-sized semidefinite program
- Methodology exemplified numerically on the Douglas-Rachford method and the Chambolle-Pock method
Why should you care?
- Convergence proofs in the literature are often based on quadratic Lyapunov inequalities
- These are found by, on a case-by-case basis, using:
- Inequalities that characterize the function classes involved
- Algorithm update equations
- This work automates this process

Preliminaries

- $(\mathcal{H},\langle\cdot, \cdot\rangle)$ real Hilbert space. Associated norm $\|\cdot\|^{2}=\langle\cdot, \cdot\rangle$
- Let $0 \leq \sigma<+\infty$ and $0 \leq \beta \leq+\infty$.
$\mathcal{F}_{\sigma, \beta}$ class of all functions $f: \mathcal{H} \rightarrow \mathbb{R} \cup\{+\infty\}$ that are proper, lower semicontinuous, σ-strongly convex and β-smooth (if $\beta<+\infty$)

Problem class

- Convex optimization problems

$$
\underset{y \in \mathcal{H}}{\operatorname{minimize}} \sum_{i=1}^{m} f_{i}(y)
$$

where $f_{i} \in \mathcal{F}_{\sigma_{i}, \beta_{i}}$ and $0 \leq \sigma_{i}<\beta_{i} \leq+\infty$, for each $i \in \llbracket 1, m \rrbracket$

- Associated inclusion problem

$$
\text { find } y \in \mathcal{H} \text { such that } 0 \in \sum_{i=1}^{m} \partial f_{i}(y)
$$

where ∂f_{i} are subdifferential operators

- Problem class $\mathcal{F}_{\boldsymbol{\sigma}, \boldsymbol{\beta}}$ is all $\left(f_{1}, \ldots, f_{m}\right) \in \prod_{i=1}^{m} \mathcal{F}_{\sigma_{i}, \beta_{i}}$ such that inclusion is solvable

Algorithms on state-space form - Preliminaries

Let $M \in \mathbb{R}^{m \times n}$. Tensor product $M \otimes \mathrm{Id}$ is mapping $(M \otimes \mathrm{Id}): \mathcal{H}^{n} \rightarrow \mathcal{H}^{m}$ such that

$$
(M \otimes \mathrm{Id}) \mathbf{z}=\left(\sum_{j=1}^{n}[M]_{1, j} z^{(j)}, \ldots, \sum_{j=1}^{n}[M]_{m, j} z^{(j)}\right)
$$

for each $\mathbf{z}=\left(z^{(1)}, \ldots, z^{(n)}\right) \in \mathcal{H}^{n}$.

Algorithms on state-space form

Algorithm representation ${ }^{1}$:

$$
\begin{aligned}
\mathbf{x}_{k+1} & =(A \otimes \mathrm{Id}) \mathbf{x}_{k}+(B \otimes \mathrm{Id}) \mathbf{u}_{k} \\
\mathbf{y}_{k} & =(C \otimes \mathrm{Id}) \mathbf{x}_{k}+(D \otimes \mathrm{Id}) \mathbf{u}_{k} \\
\mathbf{u}_{k} & \in \partial \mathbf{f}\left(\mathbf{y}_{k}\right) \\
\mathbf{F}_{k} & =\mathbf{f}\left(\mathbf{y}_{k}\right)
\end{aligned}
$$

where

$$
\begin{array}{ccc}
A \in \mathbb{R}^{n \times n} & B \in \mathbb{R}^{n \times m} & C \in \mathbb{R}^{m \times n} \\
\mathbf{x}_{k}=\left(x_{k}^{(1)}, \ldots, x_{k}^{(n)}\right) & \mathbf{y}_{k}=\left(y_{k}^{(1)}, \ldots, y_{k}^{(m)}\right) \quad \mathbf{u}_{k}=\left(u_{k}^{(1)}, \ldots, u_{k}^{(m)}\right)
\end{array}
$$

and

$$
\begin{aligned}
& \mathbf{f}: \mathcal{H}^{m} \rightarrow(\mathbb{R} \cup\{+\infty\})^{m}:\left(y^{(1)}, \ldots, y^{(m)}\right) \mapsto\left(f_{1}\left(y^{(1)}\right), \ldots, f_{m}\left(y^{(m)}\right)\right) \\
& \partial \mathbf{f}: \mathcal{H}^{m} \rightarrow 2^{\mathcal{H}^{m}}:\left(y^{(1)}, \ldots, y^{(m)}\right) \mapsto \prod_{i=1}^{m} \partial f_{i}\left(y^{(i)}\right)
\end{aligned}
$$

Examples: gradient method, proximal point method, proximal gradient method, Nesterov accelerated gradient method, gradient method with heavy-ball momentum, triple momentum method, FISTA, Davis-Yin three-operator splitting method, Chambolle-Pock method, etc.
1 Model used in control literature, (Lessard et al., 2016), and similar to the model in (Morin et al., 2022).

Algorithms on state-space form - Chambolle-Pock method

- The problem:

$$
\underset{y \in \mathcal{H}}{\operatorname{minimize}} \quad f_{1}(y)+f_{2}(y)
$$

(linear operator set to identity mapping)

- Method (Chambolle and Pock, 2011, Algorithm 1):

$$
\begin{aligned}
x_{k+1} & =\operatorname{prox}_{\tau_{1} f_{1}}\left(x_{k}-\tau_{1} y_{k}\right) \\
y_{k+1} & =\operatorname{prox}_{\tau_{2} f_{2}^{*}}\left(y_{k}+\tau_{2}\left(x_{k+1}+\theta\left(x_{k+1}-x_{k}\right)\right)\right)
\end{aligned}
$$

where $\tau_{1}, \tau_{2}>0, \theta \in \mathbb{R}$, prox is the proximal operator and f_{2}^{*} is the conjugate of f_{2}

- On state-space form:

$$
\begin{aligned}
\mathbf{x}_{k+1} & =\left(\left[\begin{array}{cc}
1 & -\tau_{1} \\
0 & 0
\end{array}\right] \otimes \mathrm{Id}\right) \mathbf{x}_{k}+\left(\left[\begin{array}{cc}
-\tau_{1} & 0 \\
0 & 1
\end{array}\right] \otimes \operatorname{Id}\right) \mathbf{u}_{k} \\
\mathbf{y}_{k} & =\left(\left[\begin{array}{cc}
1 & -\tau_{1} \\
1 & \frac{1}{\tau_{2}}-\tau_{1}(1+\theta)
\end{array}\right] \otimes \operatorname{Id}\right) \mathbf{x}_{k}+\left(\left[\begin{array}{cc}
-\tau_{1} & 0 \\
-\tau_{1}(1+\theta) & -\frac{1}{\tau_{2}}
\end{array}\right] \otimes \mathrm{Id}\right) \mathbf{u}_{k} \\
\mathbf{u}_{k} & \in \partial \mathbf{f}\left(\mathbf{y}_{k}\right)
\end{aligned}
$$

Algorithms on state-space form - Fixed points

- Algorithm fixed points $\boldsymbol{\xi}_{\star}=\left(\mathbf{x}_{\star}, \mathbf{u}_{\star}, \mathbf{y}_{\star}, \mathbf{F}_{\star}\right)$ satisfy

$$
\begin{aligned}
& \mathbf{x}_{\star}=(A \otimes \mathrm{Id}) \mathbf{x}_{\star}+(B \otimes \mathrm{Id}) \mathbf{u}_{\star} \\
& \mathbf{y}_{\star}=(C \otimes \mathrm{Id}) \mathbf{x}_{\star}+(D \otimes \mathrm{Id}) \mathbf{u}_{\star} \\
& \mathbf{u}_{\star} \in \partial \boldsymbol{f}\left(\mathbf{y}_{\star}\right) \\
& \mathbf{F}_{\star}=\mathbf{f}\left(\mathbf{y}_{\star}\right)
\end{aligned}
$$

- Algorithm objective: find fixed point $\boldsymbol{\xi}_{\star}$, extract solution from $\boldsymbol{\xi}_{\star}$

Fixed-point encoding property

- We are only interested in algorithms such that
finding a fixed point $\quad \Longleftrightarrow \quad$ solving inclusion problem
- More specifically:
- from each solution, it should be possible to construct a fixed point
- from each fixed point, it should be possible to extract a solution
- Such algorithms have the fixed-point encoding property (FPEP)

Fixed-point encoding property - Restrictions on (A, B, C, D)

- Let

$$
N=\left[\begin{array}{c}
I \\
-\mathbf{1}^{\top}
\end{array}\right] \in \mathbb{R}^{m \times(m-1)}
$$

- Result:

The algorithm has the fixed-point encoding property

$$
\text { The matrices }(A, B, C, D) \text { satisfy }
$$

$\operatorname{ran}\left[\begin{array}{cc}B N & 0 \\ D N & -\mathbf{1}\end{array}\right] \subseteq \operatorname{ran}\left[\begin{array}{c}I-A \\ -C\end{array}\right]$

$$
\operatorname{null}\left[\begin{array}{ll}
I-A & -B
\end{array}\right] \subseteq \operatorname{null}\left[\begin{array}{cc}
N^{\top} C & N^{\top} D \\
0 & \mathbf{1}^{\top}
\end{array}\right]
$$

(block row/column containing N^{\top} / N removed when $m=1$)

- (A, B, C, D) of algorithms that "work" satisfy FPEP

Algorithms on state-space form - Causal implementation

- Recall: $f_{i} \in \mathcal{F}_{\sigma_{i}, \beta_{i}}$ for each $i \in \llbracket 1, m \rrbracket$ and

$$
\begin{aligned}
\mathbf{x}_{k+1} & =(A \otimes \operatorname{Id}) \mathbf{x}_{k}+(B \otimes \operatorname{Id}) \mathbf{u}_{k} \\
\mathbf{y}_{k} & =(C \otimes \operatorname{Id}) \mathbf{x}_{k}+(D \otimes \operatorname{Id}) \mathbf{u}_{k} \\
\mathbf{u}_{k} & \in \partial \mathbf{f}\left(\mathbf{y}_{k}\right)
\end{aligned}
$$

- Assume D lower triangular with nonpositive diagonal and let

$$
\begin{aligned}
I_{\text {differentiable }} & =\left\{i \in \llbracket 1, m \rrbracket: \beta_{i}<+\infty\right\} \\
I_{D} & \left.=\left\{i \in \llbracket 1, m \rrbracket:[D]_{i, i}<0\right]\right\}
\end{aligned}
$$

satisfy $I_{\text {differentiable }} \cup I_{D}=\llbracket 1, m \rrbracket$

- Then the algorithm can be implemented using only
- proximal or gradient evaluations of each f_{i}
- scalar multiplications and vector additions

Quadratic Lyapunov inequalities

- Let $\boldsymbol{\xi}_{k}=\left(\mathbf{x}_{k}, \mathbf{u}_{k}, \mathbf{y}_{k}, \mathbf{F}_{k}\right)$ and $\xi_{\star}=\left(\mathbf{x}_{\star}, \mathbf{u}_{\star}, \mathbf{y}_{\star}, \mathbf{F}_{\star}\right)$
- Many first-order methods analyzed using Lyapunov inequalities

$$
V\left(\boldsymbol{\xi}_{k+1}, \boldsymbol{\xi}_{\star}\right) \leq \rho V\left(\boldsymbol{\xi}_{k}, \boldsymbol{\xi}_{\star}\right)-R\left(\boldsymbol{\xi}_{k}, \boldsymbol{\xi}_{\star}\right)
$$

where $\rho \in[0,1]$,

- $V: \mathcal{S} \times \mathcal{S} \rightarrow \mathbb{R}$ is a Lyapunov function
- $R: \mathcal{S} \times \mathcal{S} \rightarrow \mathbb{R}$ is a residual function
and $\mathcal{S}=\mathcal{H}^{n} \times \mathcal{H}^{m} \times \mathcal{H}^{m} \times \mathbb{R}^{m}$
- Our main tool for convergence analysis

Quadratic Lyapunov inequalities - Ansatzes

- We consider quadratic ansatzes of V and R :

$$
\begin{aligned}
V\left(\boldsymbol{\xi}, \boldsymbol{\xi}_{\star}\right) & =\left\langle\left(\mathbf{x}-\mathbf{x}_{\star}, \mathbf{u}, \mathbf{u}_{\star}\right),(Q \otimes \operatorname{Id})\left(\mathbf{x}-\mathbf{x}_{\star}, \mathbf{u}, \mathbf{u}_{\star}\right)\right\rangle+q^{\top}\left(\mathbf{F}-\mathbf{F}_{\star}\right) \\
R\left(\boldsymbol{\xi}, \boldsymbol{\xi}_{\star}\right) & =\left\langle\left(\mathbf{x}-\mathbf{x}_{\star}, \mathbf{u}, \mathbf{u}_{\star}\right),(S \otimes \operatorname{Id})\left(\mathbf{x}-\mathbf{x}_{\star}, \mathbf{u}, \mathbf{u}_{\star}\right)\right\rangle+s^{\top}\left(\mathbf{F}-\mathbf{F}_{\star}\right)
\end{aligned}
$$

where $Q, S \in \mathbb{S}^{n+2 m}, q, s \in \mathbb{R}^{m}$ parameterize the functions

- Do not know (Q, q, S, s) in advance:
- Our methodology searches for/provides (Q, q, S, s) that gives a valid Lyapunov inequality
- How do we draw convergence conclusions?
- User provides lower bound constraints on V and R
- These lower bounds imply particular convergence results

Quadratic Lyapunov inequalities - Lower bounds

Control convergence conclusion by enforcing nonnegative quadratic lower bounds:

$$
\begin{aligned}
& V\left(\boldsymbol{\xi}_{k}, \boldsymbol{\xi}_{\star}\right) \geq\left\langle\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right),(P \otimes \operatorname{Id})\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right)\right\rangle+p^{\top}\left(\mathbf{F}_{k}-\mathbf{F}_{\star}\right) \geq 0 \\
& R\left(\boldsymbol{\xi}_{k}, \boldsymbol{\xi}_{\star}\right) \geq\left\langle\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right),(T \otimes \operatorname{Id})\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right)\right\rangle+t^{\top}\left(\mathbf{F}_{k}-\mathbf{F}_{\star}\right) \geq 0
\end{aligned}
$$

where $P, T \in \mathbb{S}^{n+2 m}$ and $p, t \in \mathbb{R}^{m}$ (provided by the user).

Quadratic Lyapunov inequalities - Convergence conclusions

- For $\rho \in[0,1[$:

$$
0 \leq\left\langle\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right),(P \otimes \operatorname{Id})\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right)\right\rangle+p^{\top}\left(\mathbf{F}_{k}-\mathbf{F}_{\star}\right) \leq \rho^{k} V\left(\boldsymbol{\xi}_{0}, \boldsymbol{\xi}_{\star}\right) \rightarrow 0
$$

i.e., lower bound

$$
\left\{\left\langle\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right),(P \otimes \operatorname{Id})\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right)\right\rangle+p^{\top}\left(\mathbf{F}_{k}-\mathbf{F}_{\star}\right)\right\}_{k \in \mathbb{N}_{0}}
$$

converges ρ-linearly to 0

- For $\rho=1$, a telescoping summation gives

$$
0 \leq \sum_{k=0}^{\infty}\left(\left\langle\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right),(T \otimes \operatorname{Id})\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right)\right\rangle+t^{\top}\left(\mathbf{F}_{k}-\mathbf{F}_{\star}\right)\right) \leq V\left(\boldsymbol{\xi}_{0}, \boldsymbol{\xi}_{\star}\right)
$$

i.e., lower bound

$$
\left\{\left\langle\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right),(T \otimes \operatorname{Id})\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right)\right\rangle+t^{\top}\left(\mathbf{F}_{k}-\mathbf{F}_{\star}\right)\right\}_{k \in \mathbb{N}_{0}}
$$

is summable (and converges to zero)

Quadratic Lyapunov inequalities - Full definition

- (P, p, T, t, ρ)-quadratic Lyapunov inequality for algorithm and $\mathcal{F}_{\boldsymbol{\sigma}, \boldsymbol{\beta}}$:

C1 $V\left(\boldsymbol{\xi}_{+}, \boldsymbol{\xi}_{\star}\right) \leq \rho V\left(\boldsymbol{\xi}, \boldsymbol{\xi}_{\star}\right)-R\left(\boldsymbol{\xi}, \boldsymbol{\xi}_{\star}\right)$
C2 $V\left(\boldsymbol{\xi}, \boldsymbol{\xi}_{\star}\right) \geq\left\langle\left(\mathbf{x}-\mathbf{x}_{\star}, \mathbf{u}, \mathbf{u}_{\star}\right),(P \otimes \operatorname{Id})\left(\mathbf{x}-\mathbf{x}_{\star}, \mathbf{u}, \mathbf{u}_{\star}\right)\right\rangle+p^{\top}\left(\mathbf{F}-\mathbf{F}_{\star}\right) \geq 0$
C3 $R\left(\boldsymbol{\xi}, \boldsymbol{\xi}_{\star}\right) \geq\left\langle\left(\mathbf{x}-\mathbf{x}_{\star}, \mathbf{u}, \mathbf{u}_{\star}\right),(T \otimes \operatorname{Id})\left(\mathbf{x}-\mathbf{x}_{\star}, \mathbf{u}, \mathbf{u}_{\star}\right)\right\rangle+t^{\top}\left(\mathbf{F}-\mathbf{F}_{\star}\right) \geq 0$

- Conditions should hold for:
- each $\boldsymbol{\xi} \in \mathcal{S}$ that is algorithm-consistent for \mathbf{f}
- each successor $\boldsymbol{\xi}_{+} \in \mathcal{S}$ of $\boldsymbol{\xi}$
- each fixed point $\boldsymbol{\xi}_{\star} \in \mathcal{S}$
- each $\mathbf{f}=\left(f_{1}, \ldots, f_{m}\right) \in \mathcal{F}_{\boldsymbol{\sigma}, \boldsymbol{\beta}}$

Main result

Given:

- Problem class $\mathcal{F}_{\boldsymbol{\sigma}, \boldsymbol{\beta}}$
- A first-order method on state-space form
- (P, p, T, t, ρ) deciding convergence conclusions

We provide:

- A necessary and sufficient condition for the existence of a (P, p, T, t, ρ)-quadratic Lyapunov inequality
- Parameters (Q, q, S, s) of V and R if one exists

Main result - Necessary and sufficient condition

There exists a (P, p, T, t, ρ)-quadratic Lyapunov inequality if and only if ${ }^{1}$

$$
\begin{aligned}
& \text { C1 }\left\{\begin{array}{l}
\lambda_{(l, i, j)}^{C 1} \geq 0 \text { for each } l \in \llbracket 1, m \rrbracket \text { and distinct } i, j \in\{\varnothing,+, \star\}, \\
\Sigma_{\phi}^{\top}(\rho Q-S) \Sigma_{\propto}-\Sigma_{+}^{\top} Q \Sigma_{+}+\sum_{\substack{l=1}}^{m} \sum_{\substack{i, j \in\{\alpha,+, \star\} \\
i \neq j}} \lambda_{(l, i, j)}^{C 1} \mathbf{M}_{(l, i, j)} \succeq 0,
\end{array}\right. \\
& {\left[\begin{array}{c}
\rho q-s \\
-q
\end{array}\right]+\sum_{l=1}^{m} \sum_{\substack{i, j \in\{\sigma++, *\} \\
i \neq j}} \lambda_{(l, i, j)}^{\mathrm{C} 1} \mathbf{a}_{(l, i, j)}=0,} \\
& \left(\lambda_{(l, i, j)}^{C 2} \geq 0 \text { for each } l \in \llbracket 1, m \rrbracket \text { and distinct } i, j \in\{\varnothing, \star\}\right. \text {, } \\
& \mathrm{C} 2\left\{\begin{array}{l}
\Sigma_{\varnothing}^{\top}(Q-P) \Sigma_{\varnothing}+\sum_{l=1}^{m} \sum_{\substack{i, j \in\{\varnothing, \star\} \\
i \neq j}} \lambda_{(l, i, j)}^{\mathrm{C} 2} \mathbf{M}_{(l, i, j)} \succeq 0, \\
{\left[\begin{array}{c}
q-p \\
0
\end{array}\right]+\sum_{l=1}^{m} \sum_{\substack{i, j \in\{\varnothing, \star\} \\
i \neq j}} \lambda_{(l, i, j)}^{\mathrm{C} 2} \mathbf{a}_{(l, i, j)}=0,}
\end{array}\right. \\
& \text { C3 }\left\{\begin{array}{l}
\lambda_{(l, i, j)}^{\mathrm{C} 3} \geq 0 \text { for each } l \in \llbracket 1, m \rrbracket \text { and distinct } i, j \in\{\varnothing, \star\}, \\
\Sigma_{\phi}^{\top}(S-T) \Sigma_{\varnothing}+\sum_{l=1}^{m} \sum_{\substack{i, j \in\{\varnothing, \star\} \\
i \neq j}} \lambda_{(l, i, j)}^{\mathrm{C3}} \mathbf{M}_{(l, i, j)} \succeq 0, \\
{\left[\begin{array}{c}
s-t \\
0
\end{array}\right]+\sum_{l=1}^{m} \sum_{\substack{i, j \in\{\varnothing, \star\} \\
i \neq j}} \lambda_{\substack{\mathrm{C} 3}}^{\mathrm{Cl}, \mathrm{i}, j)} \mathbf{a}_{(l, i, j)}=0,}
\end{array}\right.
\end{aligned}
$$

is feasible.
A (typically) small-sized SDP involving (Q, q, S, s) —readily solved by standard solvers!

[^0]
Main result - How did we find this condition?

We used:

- A performance estimation problem (PEP) formulation, as first introduced in (Drori and Teboulle, 2014)
- Convex interpolation conditions given in (Taylor et al., 2017)

Numerical results - Douglas-Rachford method - linear convergence

- The problem:

$$
\underset{y \in \mathcal{H}}{\operatorname{minimize}} \quad f_{1}(y)+f_{2}(y)
$$

where $f_{1} \in \mathcal{F}_{1,2}$ and $f_{2} \in \mathcal{F}_{0, \infty}$

- Douglas-Rachford method:

$$
\begin{aligned}
y_{k}^{(1)} & =\operatorname{prox}_{\gamma f_{1}}\left(x_{k}\right) \\
y_{k}^{(2)} & =\operatorname{prox}_{\gamma f_{2}}\left(2 y_{k}^{(1)}-x_{k}\right) \\
x_{k+1} & =x_{k}+\lambda\left(y_{k}^{(2)}-y_{k}^{(1)}\right)
\end{aligned}
$$

where $\gamma \in \mathbb{R}_{++}$and $\lambda \in \mathbb{R} \backslash\{0\}(\lambda=1$ in the plot below)

- We find the smallest possible $\rho \in[0,1[$, via bisection search, such that a (P, p, T, t, ρ)-Lyapunov inequality exists, where (P, p, T, t) is chosen such that they imply that the squared distance to the solution convergence ρ-linearly to zero

- Our methodology
- (Giselsson and Boyd, 2017, Theorem 2)

Numerical results - Chambolle-Pock - sublinear convergence

- The problem:

$$
\underset{y \in \mathcal{H}}{\operatorname{minimize}} \quad f_{1}(y)+f_{2}(y)
$$

where $f_{1}, f_{2} \in \mathcal{F}_{0, \infty}$

- Method (Chambolle and Pock, 2011, Algorithm 1):

$$
\begin{aligned}
x_{k+1} & =\operatorname{prox}_{\tau_{1} f_{1}}\left(x_{k}-\tau_{1} y_{k}\right) \\
y_{k+1} & =\operatorname{prox}_{\tau_{2} f_{2}^{*}}\left(y_{k}+\tau_{2}\left(x_{k+1}+\theta\left(x_{k+1}-x_{k}\right)\right)\right)
\end{aligned}
$$

- We fix $\rho=1$ and find a range of algorithm parameters ${ }^{2}$ for which there exists a (P, p, T, t, ρ)-Lyapunov inequality, where (P, p, T, t) is chosen so that they implying $\mathcal{O}(1 / k)$ ergodic convergence of the duality gap

[^1]
Numerical results - Chambolle-Pock - sublinear convergence

- We restrict the Lyapunov inequality search space by imposing

$$
Q=\left[\begin{array}{cc}
Q_{x x} & 0 \\
0 & 0
\end{array}\right], \quad(P, p)=\left(\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right], 0\right)
$$

and get

- Restriction in Lyapunov ansatz gives the parameter region as in (Chambolle and Pock, 2011, Theorem 1)!

Numerical results - Chambolle-Pock - linear convergence

- The problem:

$$
\underset{y \in \mathcal{H}}{\operatorname{minimize}} \quad f_{1}(y)+f_{2}(y)
$$

where $f_{1}, f_{2} \in \mathcal{F}_{0.5,50}$

- Method (Chambolle and Pock, 2011, Algorithm 1):

$$
\begin{aligned}
x_{k+1} & =\operatorname{prox}_{\tau_{1} f_{1}}\left(x_{k}-\tau_{1} y_{k}\right) \\
y_{k+1} & =\operatorname{prox}_{\tau_{2} f_{2}^{*}}\left(y_{k}+\tau_{2}\left(x_{k+1}+\theta\left(x_{k+1}-x_{k}\right)\right)\right)
\end{aligned}
$$

- We find the smallest possible $\rho \in[0,1[$, via bisection search, such that a (P, p, T, t, ρ)-Lyapunov inequality exists, where (P, p, T, t) is chosen such that they imply that the squared distance to the solution convergence ρ-linearly to zero

- Better rates when parameters are outside the region given in (Chambolle and Pock, 2011, Theorem 1)

Thank you

arXiv (with code)

References

Chambolle, A. and Pock, T. (2011), 'A first-order primal-dual algorithm for convex problems with applications to imaging', Journal of Mathematical Imaging and Vision 40(1), 120-145.
Drori, Y. and Teboulle, M. (2014), 'Performance of first-order methods for smooth convex minimization: a novel approach', Mathematical Programming 145(1/2), 451-482.

Giselsson, P. and Boyd, S. (2017), 'Linear convergence and metric selection for Douglas-Rachford splitting and ADMM', IEEE Transactions on Automatic Control 62(2), 532-544.
Lessard, L., Recht, B. and Packard, A. (2016), 'Analysis and design of optimization algorithms via integral quadratic constraints', SIAM Journal on Optimization 26(1), 57-95.
Morin, M., Banert, S. and Giselsson, P. (2022), 'Frugal splitting operators: representation, minimal lifting and convergence'.
Taylor, A. B., Hendrickx, J. M. and Glineur, F. (2017), 'Smooth strongly convex interpolation and exact worst-case performance of first-order methods.', Mathematical Programming 161(1/2), 307-345.

Appendix - Examples without FPEP

- $(A, B, C, D)=(0,0,0,0)$ does not satisfy FPEP conditions
- Backward-backward splitting is given by

$$
x_{k+1}=\operatorname{prox}_{\gamma f_{2}}\left(\operatorname{prox}_{\gamma f_{1}}\left(x_{k}\right)\right)
$$

does not solve inclusion problem

- Backward-backward fits in framework with matrices

$$
A=1 \quad B=\left[\begin{array}{ll}
-\gamma & -\gamma
\end{array}\right] \quad C=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad D=\left[\begin{array}{cc}
-\gamma & 0 \\
-\gamma & -\gamma
\end{array}\right]
$$

that do not satisfy the FPEP conditions

Appendix - Extract solution from fixed point

- Fixed points of algorithms with FPEP satisfy for some y_{\star} :

$$
\sum_{i=1}^{m} u_{\star}^{(i)}=0 \quad \text { and } \quad y_{\star}^{(1)}=\ldots=y_{\star}^{(m)}=y_{\star}
$$

- Then y_{\star} solves the inclusion problem since

$$
0=\sum_{i=1}^{m} u_{\star}^{(i)} \in \sum_{i=1}^{m} \partial f_{i}\left(y_{\star}^{(i)}\right)=\sum_{i=1}^{m} \partial f_{i}\left(y_{\star}\right)
$$

(recall that $\mathbf{u}_{\star} \in \boldsymbol{\partial} \boldsymbol{f}\left(\mathbf{y}_{\star}\right)$)

Appendix - Explicit causal implementation

- The algorithm is:

$$
\begin{aligned}
& \text { for } k=0,1, \ldots \\
& \qquad \begin{aligned}
& \text { for } i=1, \ldots, m \\
& v_{k}^{(i)}=\sum_{j=1}^{n}[C]_{i, j} x_{k}^{(j)}+\sum_{j=1}^{i-1}[D]_{i, j} u_{k}^{(j)} \\
& y_{k}^{(i)}= \begin{cases}\operatorname{prox}_{-[D]_{i, i} f_{i}\left(v_{k}^{(i)}\right)} & \text { if } i \in I_{D} \\
v_{k}^{(i)} & \text { if } i \notin I_{D}\end{cases} \\
& u_{k}^{(i)}= \begin{cases}\left(-[D]_{i, i}\right)^{-1}\left(v_{k}^{(i)}-y_{k}^{(i)}\right) & \text { if } i \in I_{D} \\
\nabla f_{i}\left(y_{k}^{(i)}\right)\end{cases} \\
& F_{k}^{(i)}=f_{i}\left(y_{k}^{(i)}\right) \\
& \mathbf{x}_{k+1}=\left(x_{k+1}^{(1)}, \ldots, x_{k+1}^{(n)}\right)=(A \otimes \mathrm{Id}) \mathbf{x}_{k}+(B \otimes \mathrm{Id}) \mathbf{u}_{k}
\end{aligned}
\end{aligned}
$$

- Many fixed-parameter first-order methods on this form!

Appendix - Some choices of (P, p, T, t, ρ)

Suppose $\rho \in\left[0,1\left[\right.\right.$, let e_{i} be i th standard basis vector and

$$
(P, p, T, t)=\left(\left[\begin{array}{lll}
C & D & -D
\end{array}\right]^{\top} e_{i} e_{i}^{\top}\left[\begin{array}{lll}
C & D & -D
\end{array}\right], 0,0,0\right) .
$$

Then

$$
\left\langle\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right),(P \otimes \operatorname{Id})\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right)\right\rangle+p^{\top}\left(\mathbf{F}_{k}-\mathbf{F}_{\star}\right)=\left\|y_{k}^{(i)}-y_{\star}\right\|^{2} \geq 0
$$

and the distance to the solution squared converges ρ-linear to zero.

Appendix - Some choices of (P, p, T, t, ρ)

Suppose $\rho=1, m=1$ and let

$$
(P, p, T, t)=(0,0,0,1)
$$

Then

$$
\left\langle\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right),(T \otimes \operatorname{Id})\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right)\right\rangle+t^{\top}\left(\mathbf{F}_{k}-\mathbf{F}_{\star}\right)=f_{1}\left(y_{k}^{(1)}\right)-f_{1}\left(y_{\star}\right) \geq 0
$$

which gives

- function value suboptimality converges to zero
- $\mathcal{O}(1 / k)$ ergodic function value suboptimality convergence (via Jensen's inequality)

Appendix - Some choices of (P, p, T, t, ρ)

Suppose $\rho=1$ and let

$$
(P, p, T, t)=\left(0,0,\left[\begin{array}{ccc}
C & D & -D \\
0 & 0 & I
\end{array}\right]^{\top}\left[\begin{array}{cc}
0 & -\frac{1}{2} I \\
-\frac{1}{2} I & 0
\end{array}\right]\left[\begin{array}{ccc}
C & D & -D \\
0 & 0 & I
\end{array}\right], \mathbf{1}\right)
$$

Then

$$
\begin{aligned}
\left\langle\left(\mathbf{x}_{k}\right.\right. & \left.\left.-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right),(T \otimes \operatorname{Id})\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right)\right\rangle+t^{\top}\left(\mathbf{F}_{k}-\mathbf{F}_{\star}\right) \\
& =\sum_{i=1}^{m}\left(f_{i}\left(y_{k}^{(i)}\right)-f_{i}\left(y_{\star}^{(i)}\right)-\left\langle u_{\star}^{(i)}, y_{k}^{(i)}-y_{\star}^{(i)}\right\rangle\right) \\
& =\mathcal{L}\left(\mathbf{y}_{k}, \mathbf{u}_{\star}\right)-\mathcal{L}\left(\mathbf{y}_{\star}, \mathbf{u}_{k}\right) \geq 0
\end{aligned}
$$

where $\mathcal{L}: \mathcal{H}^{m} \times \mathcal{H}^{m} \rightarrow \mathbb{R}$ is a Lagrangian function giving

- duality gap converges to zero,
- $\mathcal{O}(1 / k)$ ergodic duality gap convergence (via Jensen's inequality).

Reduces to function value suboptimality when $m=1$.

[^0]: ${ }^{1}$ Assuming dimension independence and Slater condition

[^1]: ${ }^{2}$ The parameter range is evaluated on a square grid of size 0.01×0.01 with the restriction that $\tau_{1}=\tau_{2} \geq 0.5$

