Automated tight Lyapunov analysis for first-order methods

Manu Upadhyaya
manu.upadhyaya@control.lth.se
Lund University
Department of Automatic Control

Collaborators:

Sebastian Banert

Adrien Taylor

Pontus Giselsson

20th Workshop on Advances in Continuous Optimization (EUROpt 2023) - 2023-08-25

This talk

- Based on:
- Preprint available at arXiv:2302.06713
- Content:
- Methodology for proving algorithm convergence
- Focus on first-order (splitting) methods for convex optimization problems

Proving convergence

- Pages of inequalities:

- However, proofs look very similar:

- Automate!

- Our approach:

and

$$
V_{k+1} \leq \rho V_{k}-R_{k}
$$

One example of what we can show with our methodology

- Problem:

$$
\underset{y \in \mathcal{H}}{\operatorname{minimize}} \quad f_{1}(y)+f_{2}(y)
$$

where $f_{1}, f_{2} \in \mathcal{F}_{0, \infty}$, i.e. lower semicontinuous, proper and convex.

- Method (Chambolle and Pock, 2011, Algorithm 1):

$$
\begin{aligned}
& x_{k+1}=\operatorname{prox}_{\tau_{1} f_{1}}\left(x_{k}-\tau_{1} y_{k}\right) \\
& y_{k+1}=\operatorname{prox}_{\tau_{2} f_{2}^{*}}\left(y_{k}+\tau_{2}\left(x_{k+1}+\theta\left(x_{k+1}-x_{k}\right)\right)\right)
\end{aligned}
$$

where $\tau_{1}, \tau_{2}>0, \theta \in \mathbb{R}$, prox is the proximal operator and f_{2}^{*} is the convex conjugate of f_{2} (linear operator set to identity mapping)

- Parameter choices that give ($\mathcal{O}(1 / k)$ ergodic duality gap) convergence:

$$
\tau_{1}=\tau_{2}
$$

- (Chambolle and Pock, 2011, Theorem 1)

Our methodology ${ }^{1}$

[^0]
One example of what we can show with our methodology

- Let instead $f_{1}, f_{2} \in \mathcal{F}_{0.05,50}$, i.e., 0.05 -strongly convex and 50 -smooth
- Parameter choices that give that the squared distance to the solution convergence ρ-linearly to zero:

- Better rates when parameters are outside the region given in (Chambolle and Pock, 2011, Theorem 1)

Outline

(1) Problem class

Algorithm representation

Lyapunov inequalities

Main result - A necessary and sufficient condition

Numerical results
(6) Outlook

Problem class - Preliminaries

- $(\mathcal{H},\langle\cdot, \cdot\rangle)$ real Hilbert space. Associated norm $\|\cdot\|^{2}=\langle\cdot, \cdot\rangle$
- Let $0 \leq \sigma<+\infty$ and $0 \leq \beta \leq+\infty$.
$\mathcal{F}_{\sigma, \beta}$ class of all functions $f: \mathcal{H} \rightarrow \mathbb{R} \cup\{+\infty\}$ that are proper, lower semicontinuous, σ-strongly convex and β-smooth (if $\beta<+\infty$)

Problem class

- Convex optimization problem

$$
\underset{y \in \mathcal{H}}{\operatorname{minimize}} \sum_{i=1}^{m} f_{i}(y)
$$

where $f_{i} \in \mathcal{F}_{\sigma_{i}, \beta_{i}}$ and $0 \leq \sigma_{i}<\beta_{i} \leq+\infty$, for each $i \in \llbracket 1, m \rrbracket$

- Associated inclusion problem

$$
\text { find } y \in \mathcal{H} \text { such that } 0 \in \sum_{i=1}^{m} \partial f_{i}(y)
$$

where ∂f_{i} are subdifferential operators

- Problem class $\mathcal{F}_{\boldsymbol{\sigma}, \boldsymbol{\beta}}$ is all $\left(f_{1}, \ldots, f_{m}\right) \in \prod_{i=1}^{m} \mathcal{F}_{\sigma_{i}, \beta_{i}}$ such that inclusion is solvable

Outline

(1) Problem class
(2) Algorithm representation

Lyapunov inequalities

Main result - A necessary and sufficient condition

Numerical results
(6) Outlook

Algorithm representation

Algorithms on state-space form ${ }^{23}$:

$$
\begin{aligned}
\mathbf{x}_{k+1} & =(A \otimes \mathrm{Id}) \mathbf{x}_{k}+(B \otimes \mathrm{Id}) \mathbf{u}_{k} \\
\mathbf{y}_{k} & =(C \otimes \mathrm{Id}) \mathbf{x}_{k}+(D \otimes \mathrm{Id}) \mathbf{u}_{k} \\
\mathbf{u}_{k} & \in \partial \mathbf{f}\left(\mathbf{y}_{k}\right) \\
\mathbf{F}_{k} & =\mathbf{f}\left(\mathbf{y}_{k}\right)
\end{aligned}
$$

where

$$
\begin{array}{ccc}
A \in \mathbb{R}^{n \times n} & B \in \mathbb{R}^{n \times m} & C \in \mathbb{R}^{m \times n} \\
\mathbf{x}_{k}=\left(x_{k}^{(1)}, \ldots, x_{k}^{(n)}\right) & \mathbf{y}_{k}=\left(y_{k}^{(1)}, \ldots, y_{k}^{(m)}\right) \quad \mathbf{u}_{k}=\left(u_{k}^{(1)}, \ldots, u_{k}^{(m)}\right)
\end{array}
$$

and

$$
\begin{aligned}
& \mathbf{f}: \mathcal{H}^{m} \rightarrow(\mathbb{R} \cup\{+\infty\})^{m}:\left(y^{(1)}, \ldots, y^{(m)}\right) \mapsto\left(f_{1}\left(y^{(1)}\right), \ldots, f_{m}\left(y^{(m)}\right)\right) \\
& \partial \mathbf{f}: \mathcal{H}^{m} \rightarrow 2^{\mathcal{H}^{m}}:\left(y^{(1)}, \ldots, y^{(m)}\right) \mapsto \prod_{i=1}^{m} \partial f_{i}\left(y^{(i)}\right)
\end{aligned}
$$

[^1]
Algorithm representation

Examples:

- gradient method
- proximal point method
- proximal gradient method
- Nesterov accelerated gradient method
- gradient method with heavy-ball momentum
- triple momentum method
- FISTA
- Davis-Yin three-operator splitting method
- Chambolle-Pock method
- etc.

Algorithm representation - Chambolle-Pock method

- The problem:

$$
\underset{y \in \mathcal{H}}{\operatorname{minimize}} \quad f_{1}(y)+f_{2}(y)
$$

- Method (Chambolle and Pock, 2011, Algorithm 1):

$$
\begin{aligned}
x_{k+1} & =\operatorname{prox}_{\tau_{1} f_{1}}\left(x_{k}-\tau_{1} y_{k}\right) \\
y_{k+1} & =\operatorname{prox}_{\tau_{2} f_{2}^{*}}\left(y_{k}+\tau_{2}\left(x_{k+1}+\theta\left(x_{k+1}-x_{k}\right)\right)\right)
\end{aligned}
$$

where $\tau_{1}, \tau_{2}>0, \theta \in \mathbb{R}$ (linear operator set to identity mapping)

- On state-space form:

$$
\begin{aligned}
\mathbf{x}_{k+1} & =\left(\left[\begin{array}{cc}
1 & -\tau_{1} \\
0 & 0
\end{array}\right] \otimes \operatorname{Id}\right) \mathbf{x}_{k}+\left(\left[\begin{array}{cc}
-\tau_{1} & 0 \\
0 & 1
\end{array}\right] \otimes \operatorname{Id}\right) \mathbf{u}_{k} \\
\mathbf{y}_{k} & =\left(\left[\begin{array}{cc}
1 & -\tau_{1} \\
1 & \frac{1}{\tau_{2}}-\tau_{1}(1+\theta)
\end{array}\right] \otimes \operatorname{Id}\right) \mathbf{x}_{k}+\left(\left[\begin{array}{cc}
-\tau_{1} & 0 \\
-\tau_{1}(1+\theta) & -\frac{1}{\tau_{2}}
\end{array}\right] \otimes \operatorname{Id}\right) \mathbf{u}_{k} \\
\mathbf{u}_{k} & \in \partial \mathbf{f}\left(\mathbf{y}_{k}\right)
\end{aligned}
$$

Algorithm representation - Proximal gradient method with heavy-ball momentum

- The problem:

$$
\underset{y \in \mathcal{H}}{\operatorname{minimize}} \quad f_{1}(y)+f_{2}(y)
$$

- Method:

$$
x_{k+1}=\operatorname{prox}_{\gamma f_{2}}\left(x_{k}-\gamma \nabla f_{1}\left(x_{k}\right)+\delta_{1}\left(x_{k}-x_{k-1}\right)\right)+\delta_{2}\left(x_{k}-x_{k-1}\right)
$$

where $\gamma>0$ and $\delta_{1}, \delta_{2} \in \mathbb{R}$

- On state-space form:

$$
\begin{aligned}
\mathbf{x}_{k+1} & =\left(\left[\begin{array}{cc}
1+\delta_{1}+\delta_{2} & -\delta_{1}-\delta_{2} \\
1 & 0
\end{array}\right] \otimes \operatorname{Id}\right) \mathbf{x}_{k}+\left(\left[\begin{array}{cc}
-\gamma & -\gamma \\
0 & 0
\end{array}\right] \otimes \operatorname{Id}\right) \mathbf{u}_{k} \\
\mathbf{y}_{k} & =\left(\left[\begin{array}{cc}
1 & 0 \\
1+\delta_{1} & -\delta_{1}
\end{array}\right] \otimes \operatorname{Id}\right) \mathbf{x}_{k}+\left(\left[\begin{array}{cc}
0 & 0 \\
-\gamma & -\gamma
\end{array}\right] \otimes \operatorname{Id}\right) \mathbf{u}_{k} \\
\mathbf{u}_{k} & \in \partial \mathbf{f}\left(\mathbf{y}_{k}\right)
\end{aligned}
$$

Algorithm representation - Fixed points

- Algorithm fixed points $\boldsymbol{\xi}_{\star}=\left(\mathbf{x}_{\star}, \mathbf{u}_{\star}, \mathbf{y}_{\star}, \mathbf{F}_{\star}\right)$ satisfy

$$
\begin{aligned}
& \mathbf{x}_{\star}=(A \otimes \mathrm{Id}) \mathbf{x}_{\star}+(B \otimes \mathrm{Id}) \mathbf{u}_{\star} \\
& \mathbf{y}_{\star}=(C \otimes \mathrm{Id}) \mathbf{x}_{\star}+(D \otimes \mathrm{Id}) \mathbf{u}_{\star} \\
& \mathbf{u}_{\star} \in \partial \mathbf{f}\left(\mathbf{y}_{\star}\right) \\
& \mathbf{F}_{\star}=\mathbf{f}\left(\mathbf{y}_{\star}\right)
\end{aligned}
$$

- Algorithm objective: find fixed point $\boldsymbol{\xi}_{\star}$, extract solution from $\boldsymbol{\xi}_{\star}$

Algorithm representation - Fixed-point encoding property

- We are only interested in algorithms such that

$$
\text { "finding a fixed point } \Longleftrightarrow \text { solving inclusion problem" }
$$

- More specifically ${ }^{4}$:
- from each solution, it should be possible to construct a fixed point
- from each fixed point, it should be possible to extract a solution
- Such algorithms have the fixed-point encoding property (FPEP)

[^2]
Algorithm representation - Fixed-point encoding property Restrictions on (A, B, C, D)

- Let

$$
N=\left[\begin{array}{c}
I \\
-\mathbf{1}^{\top}
\end{array}\right] \in \mathbb{R}^{m \times(m-1)}
$$

where 1 denotes the column vector of all ones of comfortable size

- Result:

The algorithm has the fixed-point encoding property

$$
\text { The matrices }(A, B, C, D) \text { satisfy }
$$

$$
\begin{aligned}
& \operatorname{ran}\left[\begin{array}{cc}
B N & 0 \\
D N & -\mathbf{1}
\end{array}\right] \subseteq \operatorname{ran}\left[\begin{array}{c}
I-A \\
-C
\end{array}\right] \\
& \text { null }\left[\begin{array}{ll}
I-A & -B
\end{array}\right] \subseteq \operatorname{null}\left[\begin{array}{cc}
N^{\top} C & N^{\top} D \\
0 & \mathbf{1}^{\top}
\end{array}\right]
\end{aligned}
$$

(block row/column containing N^{\top} / N removed when $m=1$)

- (A, B, C, D) of all algorithms mentioned so far satisfy FPEP and is a running assumption

Algorithm representation - Well-posedness and uniqueness

- Recall: $f_{i} \in \mathcal{F}_{\sigma_{i}, \beta_{i}}$ for each $i \in \llbracket 1, m \rrbracket$ and

$$
\begin{aligned}
\mathbf{x}_{k+1} & =(A \otimes \operatorname{Id}) \mathbf{x}_{k}+(B \otimes \operatorname{Id}) \mathbf{u}_{k} \\
\mathbf{y}_{k} & =(C \otimes \operatorname{Id}) \mathbf{x}_{k}+(D \otimes \operatorname{Id}) \mathbf{u}_{k} \\
\mathbf{u}_{k} & \in \partial \mathbf{f}\left(\mathbf{y}_{k}\right)
\end{aligned}
$$

- Well-posedness: Can we find at least one \mathbf{x}_{k+1} for each \mathbf{x}_{k} ?
- Uniqueness: If so, is \mathbf{x}_{k+1} unique?

Algorithm representation - Well-posedness and uniqueness

- Recall: $f_{i} \in \mathcal{F}_{\sigma_{i}, \beta_{i}}$ for each $i \in \llbracket 1, m \rrbracket$ and

$$
\begin{aligned}
\mathbf{x}_{k+1} & =(A \otimes \operatorname{Id}) \mathbf{x}_{k}+(B \otimes \operatorname{Id}) \mathbf{u}_{k} \\
\mathbf{y}_{k} & =(C \otimes \operatorname{Id}) \mathbf{x}_{k}+(D \otimes \operatorname{Id}) \mathbf{u}_{k} \\
\mathbf{u}_{k} & \in \partial \mathbf{f}\left(\mathbf{y}_{k}\right)
\end{aligned}
$$

- Sufficient condition for well-posedness and uniqueness:
D lower triangular with nonpositive diagonal and

$$
\begin{aligned}
I_{\text {differentiable }} & =\left\{i \in \llbracket 1, m \rrbracket: \beta_{i}<+\infty\right\} \\
I_{D} & \left.=\left\{i \in \llbracket 1, m \rrbracket:[D]_{i, i}<0\right]\right\}
\end{aligned}
$$

satisfy $I_{\text {differentiable }} \cup I_{D}=\llbracket 1, m \rrbracket$

- Above is a running assumption

Algorithm representation - Explicit causal implementation

- Under the sufficient condition above, the algorithm can be implemented as

$$
\begin{aligned}
& \text { for } k=0,1, \ldots \\
& \qquad \begin{aligned}
& \text { for } i=1, \ldots, m \\
& v_{k}^{(i)}= \sum_{j=1}^{n}[C]_{i, j} x_{k}^{(j)}+\sum_{j=1}^{i-1}[D]_{i, j} u_{k}^{(j)}, \\
& y_{k}^{(i)}= \begin{cases}\operatorname{prox}_{-[D]_{i, i} f_{i}\left(v_{k}^{(i)}\right)} \quad \text { if } i \in I_{D}^{(i)} \\
v_{k}^{(i)} \\
u_{k}^{(i)} & = \begin{cases}\left(-[D]_{i, i}\right)^{-1}\left(v_{k}^{(i)}-y_{k}^{(i)}\right) & \text { if } i \in I_{D} \\
\nabla f_{i}\left(y_{k}^{(i)}\right)\end{cases} \\
\mathbf{x}_{k+1}=\left(x_{k+1}^{(1)}, \ldots, x_{k+1}^{(n)}\right)=(A \otimes \mathrm{Id}) \mathbf{x}_{k}+(B \otimes \mathrm{Id}) \mathbf{u}_{k}\end{cases}
\end{aligned} .
\end{aligned}
$$

- Many fixed-parameter first-order methods on this form!

Outline

(1) Problem class
(2) Algorithm representation
(3) Lyapunov inequalities

Main result - A necessary and sufficient condition

Numerical results
(6) Outlook

Lyapunov inequalities

- Let $\boldsymbol{\xi}_{k}=\left(\mathbf{x}_{k}, \mathbf{u}_{k}, \mathbf{y}_{k}, \mathbf{F}_{k}\right)$ and $\xi_{\star}=\left(\mathbf{x}_{\star}, \mathbf{u}_{\star}, \mathbf{y}_{\star}, \mathbf{F}_{\star}\right)$
- Many first-order methods analyzed using Lyapunov inequalities

$$
V\left(\boldsymbol{\xi}_{k+1}, \boldsymbol{\xi}_{\star}\right) \leq \rho V\left(\boldsymbol{\xi}_{k}, \boldsymbol{\xi}_{\star}\right)-R\left(\boldsymbol{\xi}_{k}, \boldsymbol{\xi}_{\star}\right)
$$

where $\rho \in[0,1]$,

- $V: \mathcal{S} \times \mathcal{S} \rightarrow \mathbb{R}$ is a Lyapunov function
- $R: \mathcal{S} \times \mathcal{S} \rightarrow \mathbb{R}$ is a residual function
and $\mathcal{S}=\mathcal{H}^{n} \times \mathcal{H}^{m} \times \mathcal{H}^{m} \times \mathbb{R}^{m}$
- Traditional way to find Lyapunov inequalities:
- Use inequalities for the function classes involved (e.g. $\mathcal{F}_{\sigma_{i}, \beta_{i}}$)
- Combine with algorithm updates
- Manipulate to arrive at a Lyapunov inequality
- We want to automatically find such Lyapunov inequalities!

Lyapunov inequalities - Quadratic ansatzes

- We consider quadratic ansatzes of V and R :

$$
\begin{aligned}
V\left(\boldsymbol{\xi}, \boldsymbol{\xi}_{\star}\right) & =\left\langle\left(\mathbf{x}-\mathbf{x}_{\star}, \mathbf{u}, \mathbf{u}_{\star}\right),(Q \otimes \operatorname{Id})\left(\mathbf{x}-\mathbf{x}_{\star}, \mathbf{u}, \mathbf{u}_{\star}\right)\right\rangle+q^{\top}\left(\mathbf{F}-\mathbf{F}_{\star}\right) \\
R\left(\boldsymbol{\xi}, \boldsymbol{\xi}_{\star}\right) & =\left\langle\left(\mathbf{x}-\mathbf{x}_{\star}, \mathbf{u}, \mathbf{u}_{\star}\right),(S \otimes \operatorname{Id})\left(\mathbf{x}-\mathbf{x}_{\star}, \mathbf{u}, \mathbf{u}_{\star}\right)\right\rangle+s^{\top}\left(\mathbf{F}-\mathbf{F}_{\star}\right)
\end{aligned}
$$

where $Q, S \in \mathbb{S}^{n+2 m}, q, s \in \mathbb{R}^{m}$ parameterize the functions ${ }^{5}$

- Our methodology searches for/provides (Q, q, S, s) that gives a valid Lyapunov inequality

$$
\begin{aligned}
& { }^{5} \text { Inner-product }\langle\cdot, \cdot\rangle \text { on } \mathcal{H}^{d} \text { is given by } \\
& \qquad\left\langle\mathbf{z}_{1}, \mathbf{z}_{2}\right\rangle=\sum_{i=1}^{d}\left\langle z_{1}^{(i)}, z_{2}^{(i)}\right\rangle
\end{aligned}
$$

for each $\mathbf{z}_{i}=\left(z_{i}^{(1)}, \ldots, z_{i}^{(d)}\right) \in \mathcal{H}^{d}$ and $i \in \llbracket 1,2 \rrbracket$

Lyapunov inequalities - Lower bounds

- However, we do not know (Q, q, S, s) that parameterize V and R in advance \Longrightarrow can not control convergence conclusions
- Solution: enforce nonnegative quadratic lower bounds on V and R

$$
\begin{aligned}
& V\left(\boldsymbol{\xi}_{k}, \boldsymbol{\xi}_{\star}\right) \geq\left\langle\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right),(P \otimes \operatorname{Id})\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right)\right\rangle+p^{\top}\left(\mathbf{F}_{k}-\mathbf{F}_{\star}\right) \geq 0 \\
& R\left(\boldsymbol{\xi}_{k}, \boldsymbol{\xi}_{\star}\right) \geq\left\langle\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right),(T \otimes \operatorname{Id})\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right)\right\rangle+t^{\top}\left(\mathbf{F}_{k}-\mathbf{F}_{\star}\right) \geq 0
\end{aligned}
$$

where $P, T \in \mathbb{S}^{n+2 m}$ and $p, t \in \mathbb{R}^{m}$ are fixed

Lyapunov inequalities - Lower bounds - Convergence conclusions

- Recall:
- $V\left(\boldsymbol{\xi}_{k+1}, \boldsymbol{\xi}_{\star}\right) \leq \rho V\left(\boldsymbol{\xi}_{k}, \boldsymbol{\xi}_{\star}\right)-R\left(\boldsymbol{\xi}_{k}, \boldsymbol{\xi}_{\star}\right)$
- $V\left(\boldsymbol{\xi}_{k}, \boldsymbol{\xi}_{\star}\right) \geq\left\langle\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right),(P \otimes \operatorname{Id})\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right)\right\rangle+p^{\top}\left(\mathbf{F}_{k}-\mathbf{F}_{\star}\right) \geq 0$
- $R\left(\boldsymbol{\xi}_{k}, \boldsymbol{\xi}_{\star}\right) \geq\left\langle\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right),(T \otimes \operatorname{Id})\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right)\right\rangle+t^{\top}\left(\mathbf{F}_{k}-\mathbf{F}_{\star}\right) \geq 0$
- For $\rho \in[0,1[$:

$$
0 \leq\left\langle\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right),(P \otimes \operatorname{Id})\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right)\right\rangle+p^{\top}\left(\mathbf{F}_{k}-\mathbf{F}_{\star}\right) \leq \rho^{k} V\left(\boldsymbol{\xi}_{0}, \boldsymbol{\xi}_{\star}\right) \rightarrow 0
$$

i.e., lower bound

$$
\left\{\left\langle\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right),(P \otimes \operatorname{Id})\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right)\right\rangle+p^{\top}\left(\mathbf{F}_{k}-\mathbf{F}_{\star}\right)\right\}_{k \in \mathbb{N}_{0}}
$$

converges ρ-linearly to 0

- For $\rho=1$, a telescoping summation gives

$$
0 \leq \sum_{k=0}^{\infty}\left(\left\langle\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right),(T \otimes \operatorname{Id})\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right)\right\rangle+t^{\top}\left(\mathbf{F}_{k}-\mathbf{F}_{\star}\right)\right) \leq V\left(\boldsymbol{\xi}_{0}, \boldsymbol{\xi}_{\star}\right)
$$

i.e., lower bound

$$
\left\{\left\langle\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right),(T \otimes \operatorname{Id})\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right)\right\rangle+t^{\top}\left(\mathbf{F}_{k}-\mathbf{F}_{\star}\right)\right\}_{k \in \mathbb{N}_{0}}
$$

is summable (and converges to zero)

Lyapunov inequalities - Full definition

- (P, p, T, t, ρ)-quadratic Lyapunov inequality for algorithm and $\mathcal{F}_{\boldsymbol{\sigma}, \boldsymbol{\beta}}$:

C1 $V\left(\boldsymbol{\xi}_{k+1}, \boldsymbol{\xi}_{\star}\right) \leq \rho V\left(\boldsymbol{\xi}_{k}, \boldsymbol{\xi}_{\star}\right)-R\left(\boldsymbol{\xi}_{k}, \boldsymbol{\xi}_{\star}\right)$
C2 $V\left(\boldsymbol{\xi}_{k}, \boldsymbol{\xi}_{\star}\right) \geq\left\langle\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right),(P \otimes \mathrm{Id})\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right)\right\rangle+p_{\top}^{\top}\left(\mathbf{F}_{k}-\mathbf{F}_{\star}\right) \geq 0$
C3 $R\left(\boldsymbol{\xi}_{k}, \boldsymbol{\xi}_{\star}\right) \geq\left\langle\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right),(T \otimes \operatorname{Id})\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right)\right\rangle+t^{\top}\left(\mathbf{F}_{k}-\mathbf{F}_{\star}\right) \geq 0$

- Technical difficulty: We only want this to hold for algorithm-consistent points ξ_{k}, fixed points $\boldsymbol{\xi}_{\star}$, and $\mathbf{f} \in \mathcal{F}_{\boldsymbol{\sigma}, \boldsymbol{\beta}}$

Outline

(1) Problem class
(2) Algorithm representation
(3) Lyapunov inequalities
4) Main result - A necessary and sufficient condition

Numerical results

Outlook

Main result

Given:

- Problem class $\mathcal{F}_{\boldsymbol{\sigma}, \boldsymbol{\beta}}$
- A first-order method on state-space form, i.e., (A, B, C, D)
- ($P, p, T, t, \rho)$ deciding convergence conclusions

We provide:

- A necessary and sufficient condition for the existence of a (P, p, T, t, ρ)-quadratic Lyapunov inequality
- Parameters (Q, q, S, s) of V and R if one exists

Main result - Necessary and sufficient condition

There exists a (P, p, T, t, ρ)-quadratic Lyapunov inequality
if and only if ${ }^{6}$
a particular SDP involving (Q, q, S, s) is feasible

$$
\begin{aligned}
& \text { C1 }\left\{\begin{array}{l}
\lambda_{(l, i, j)}^{C 1} \geq 0 \text { for each } l \in \llbracket 1, m \rrbracket \text { and distinct } i, j \in\{\sigma,+, \star\}, \\
\Sigma_{\sigma}^{\top}(\rho Q-S) \Sigma_{\rho}-\Sigma_{+}^{\top} Q \Sigma_{+}+\sum_{l=1}^{m} \sum_{\substack{i, j \in\{(\rho,+, *\} \\
i \neq j}} \lambda_{(l, i, j)}^{C 1} \mathbf{M}_{(l, i, j)} \geq 0, \\
{\left[\begin{array}{c}
\rho q-s \\
-q
\end{array}\right]+\sum_{l=1}^{m} \sum_{\substack{i, j \in\{(\sigma,+, *\} \\
i \neq j}} \lambda_{(l, i, j)}^{C 1} \mathbf{a}_{(l, i, j)}=0,}
\end{array}\right. \\
& \int_{(l, i, j)}^{\lambda_{(2)}^{C 2}} \geq 0 \text { for each } l \in \llbracket 1, m \rrbracket \text { and distinct } i, j \in\{\varnothing, \star\}, \\
& \mathrm{C} 2\left\{\begin{array}{l}
\Sigma_{\boldsymbol{\rho}}^{\top}(Q-P) \Sigma_{\boldsymbol{\rho}}+\sum_{l=1}^{m} \sum_{\substack{i, j \in\{\boldsymbol{\rho}, \star\} \\
i \neq j}} \lambda_{(l, i, j)}^{C 2} \mathbf{M}_{(l, i, j)} \succeq 0, \\
{\left.\left[\begin{array}{c}
q-p \\
0
\end{array}\right]+\sum_{\substack{ \\
l=1}}^{\substack{i, j \in\{\rho, \star\} \\
i \neq j}} \right\rvert\,} \\
\lambda_{l(i, j)}^{C 2} \mathbf{a}_{(l, i, j)}=0,
\end{array}\right. \\
& \text { C3 }\left\{\begin{array}{l}
\lambda_{(l, i, j)}^{C 3} \geq 0 \text { for each } l \in \llbracket 1, m \rrbracket \text { and distinct } i, j \in\{\phi, \star\}, \\
\Sigma_{\varnothing}^{\top}(S-T) \Sigma_{\phi}+\sum_{l=1}^{m} \sum_{i, j \in\{\varnothing, \star\}} \lambda_{(l, i, j)}^{C 3} \mathbf{M}_{(l, i, j)} \succeq 0, \\
{\left[\begin{array}{c}
s-t \\
0
\end{array}\right]+\sum_{l=1}^{m} \sum_{\substack{i, j \in\{\varnothing, \star\} \\
i \neq j}} \lambda_{\substack{l, i, j)}}^{C 3} \mathbf{a}_{(l, i, j)}=0,}
\end{array}\right.
\end{aligned}
$$

[^3]
Main result - How did we find this condition?

- Let us look at $\mathbf{C 1}:^{7} V\left(\boldsymbol{\xi}_{+}, \boldsymbol{\xi}_{\star}\right) \leq \rho V\left(\boldsymbol{\xi}, \boldsymbol{\xi}_{\star}\right)-R\left(\boldsymbol{\xi}, \boldsymbol{\xi}_{\star}\right)$
- C1 equivalent to that optimal value of

$$
\begin{array}{ll}
\text { maximize } & V\left(\boldsymbol{\xi}_{+}, \boldsymbol{\xi}_{\star}\right)-\rho V\left(\boldsymbol{\xi}, \boldsymbol{\xi}_{\star}\right)+R\left(\boldsymbol{\xi}, \boldsymbol{\xi}_{\star}\right) \\
\text { subject to } & \boldsymbol{\xi} \text { is algorithm consistent for } \mathbf{f}, \\
& \boldsymbol{\xi}_{+} \text {is a successor of } \boldsymbol{\xi} \text { for } \mathbf{f}, \\
& \boldsymbol{\xi}_{\star} \text { is a fixed point for } \mathbf{f}, \\
& \mathbf{f} \in \mathcal{F}_{\sigma, \boldsymbol{\beta}},
\end{array}
$$

is nonpositive!

- Arrived at the condition using:
- Convex interpolation conditions (Taylor et al., 2017b)
- Performance estimation problem (PEP) reformulations (Drori and Teboulle, 2014)

[^4]
Outline

(1) Problem class
(2) Algorithm representation
(3) Lyapunov inequalities
4) Main result - A necessary and sufficient condition
(5) Numerical results
(6) Outlook

Numerical results - Douglas-Rachford method

- The problem:

$$
\underset{y \in \mathcal{H}}{\operatorname{minimize}} \quad f_{1}(y)+f_{2}(y)
$$

where $f_{1} \in \mathcal{F}_{1,2}$ and $f_{2} \in \mathcal{F}_{0, \infty}$

- Douglas-Rachford method:

$$
\begin{aligned}
y_{k}^{(1)} & =\operatorname{prox}_{\gamma f_{1}}\left(x_{k}\right) \\
y_{k}^{(2)} & =\operatorname{prox}_{\gamma f_{2}}\left(2 y_{k}^{(1)}-x_{k}\right) \\
x_{k+1} & =x_{k}+\lambda\left(y_{k}^{(2)}-y_{k}^{(1)}\right)
\end{aligned}
$$

where $\gamma \in \mathbb{R}_{++}$and $\lambda \in \mathbb{R} \backslash\{0\}(\lambda=1$ in the plot below $)$

- $(P, p, T, t, \rho) \Longrightarrow$ squared distance to the solution convergence ρ-linearly to zero ${ }^{8}$

- Our methodology
- (Giselsson and Boyd, 2017, Theorem 2)

[^5]
Numerical results - Gradient method with heavy-ball momentum

- The problem:

$$
\underset{y \in \mathcal{H}}{\operatorname{minimize}} \quad f_{1}(y)
$$

where $f_{1} \in \mathcal{F}_{0,1}$

- Gradient method with heavy-ball momentum:

$$
x_{k+1}=x_{k}-\gamma \nabla f_{1}\left(x_{k}\right)+\delta\left(x_{k}-x_{k-1}\right)
$$

- $(P, p, T, t, \rho) \Longrightarrow \lim _{k \rightarrow \infty}\left(f_{1}\left(x_{k}\right)-f_{1}\left(x_{\star}\right)\right)=0$ and $f_{1}\left(\frac{1}{K} \sum_{k=1}^{K} x_{k}\right)-f_{1}\left(x_{\star}\right)=\mathcal{O}\left(\frac{1}{K}\right)$

[^6]
Outline

(1) Problem class
(2) Algorithm representation
(3) Lyapunov inequalities
4) Main result - A necessary and sufficient condition
(5) Numerical results
(6) Outlook

Summary and outlook

- Summary:
- A framework for automated convergence proofs for first-order methods used to solve convex optimization problems
- Introduced a state-space representation based on matrices A, B, C, D
- Introduced a necessary and sufficient condition for the existence of quadratic Lyapunov inequalities
- Numerical examples extending previous results

- Outlook:

- Change $f_{i} \in \mathcal{F}_{\sigma_{i}, \beta_{i}}$ to any function class that has quadratic interpolation constraints:
- class of smooth functions (Taylor et al., 2017a)
- class of convex and quadratically upper bounded functions (Goujaud et al., 2022)
- class of convex and Lipschitz continuous functions (Taylor et al., 2017a)
- class of smooth hypoconvex (weakly convex) functions (Rotaru et al., 2022)
- class of smooth functions satisfying the Polyak-Łojasiewicz inequality (Abbaszadehpeivasti et al., 2022)
- Extend algorithm representation to allow for more types of oracles:
- Frank-Wolfe-type oracles (Taylor et al., 2017a)
- Bregman-type oracles (Dragomir et al., 2022)
- approximate proximal operator oracles (Barré et al., 2022)
- Allow multiple evaluations of the same subdifferential ∂f_{i} during the same iteration
- enabling analysis of, e.g., the forward-backward-forward splitting method of Tseng (Tseng, 2000)
- Extend the quadratic Lyapunov function and the quadratic residual function ansatzes to not only contain the current iterate $\boldsymbol{\xi}_{k}$, but some history $\boldsymbol{\xi}_{k}, \boldsymbol{\xi}_{k-1}, \ldots, \boldsymbol{\xi}_{k+1-h}$ for some integer $h \geq 1$
- Use methodology to find computer-aided proofs of analytical Lyapunov inequalities and convergence results

Thank you

References I

Abbaszadehpeivasti, H., de Klerk, E. and Zamani, M. (2022), 'Conditions for linear convergence of the gradient method for non-convex optimization'.
Barré, M., Taylor, A. B. and Bach, F. (2022), 'Principled analyses and design of first-order methods with inexact proximal operators', Mathematical Programming .
Chambolle, A. and Pock, T. (2011), 'A first-order primal-dual algorithm for convex problems with applications to imaging', Journal of Mathematical Imaging and Vision 40(1), 120-145.
Dragomir, R.-A., Taylor, A. B., d'Aspremont, A. and Bolte, J. (2022), 'Optimal complexity and certification of bregman first-order methods', Mathematical Programming 194(1-2), 41-83.
Drori, Y. and Teboulle, M. (2014), 'Performance of first-order methods for smooth convex minimization: a novel approach', Mathematical Programming 145(1/2), 451-482.
Ghadimi, E., Feyzmahdavian, H. R. and Johansson, M. (2015), Global convergence of the heavy-ball method for convex optimization, in '2015 European Control Conference (ECC)', pp. 310-315.
Giselsson, P. and Boyd, S. (2017), 'Linear convergence and metric selection for Douglas-Rachford splitting and ADMM', IEEE Transactions on Automatic Control 62(2), 532-544.
Goujaud, B., Taylor, A. and Dieuleveut, A. (2022), 'Optimal first-order methods for convex functions with a quadratic upper bound'.
Lessard, L., Recht, B. and Packard, A. (2016), 'Analysis and design of optimization algorithms via integral quadratic constraints', SIAM Journal on Optimization 26(1), 57-95.
Morin, M., Banert, S. and Giselsson, P. (2022), 'Frugal splitting operators: representation, minimal lifting and convergence'.

References II

Rotaru, T., Glineur, F. and Patrinos, P. (2022), 'Tight convergence rates of the gradient method on smooth hypoconvex functions'.
Taylor, A. B., Hendrickx, J. M. and Glineur, F. (2017a), 'Exact worst-case performance of first-order methods for composite convex optimization', SIAM Journal on Optimization 27(3), 1283-1313.
Taylor, A. B., Hendrickx, J. M. and Glineur, F. (2017b), 'Smooth strongly convex interpolation and exact worst-case performance of first-order methods.', Mathematical Programming 161(1/2), 307-345.
Tseng, P. (2000), 'A modified forward-backward splitting method for maximal monotone mappings', SIAM Journal on Control and Optimization 38(2), 431-446.
Upadhyaya, M., Banert, S., Taylor, A. B. and Giselsson, P. (2023), 'Automated tight lyapunov analysis for first-order methods'.

Appendix - Preliminaries

- $(\mathcal{H},\langle\cdot, \cdot\rangle)$ real Hilbert space. Associated norm $\|\cdot\|^{2}=\langle\cdot, \cdot\rangle$
- Let $f: \mathcal{H} \rightarrow \mathbb{R} \cup\{+\infty\}$. Then:
(i) effective domain of f is the set $\operatorname{dom} f=\{x \in \mathcal{H} \mid f(x)<+\infty\}$
(ii) f proper if $\operatorname{dom} f \neq \emptyset$
(iii) subdifferential of a proper function f is the set-valued operator ∂f : $\mathcal{H} \rightarrow 2^{\mathcal{H}}$ such that $x \mapsto\{u \in \mathcal{H} \mid \forall y \in \mathcal{H}, f(y) \geq f(x)+\langle u, y-x\rangle\}$
- Let $f: \mathcal{H} \rightarrow \mathbb{R} \cup\{+\infty\}$ and $\sigma, \beta \in \mathbb{R}_{+}$. The function f is:
(i) convex if $f((1-\lambda) x+\lambda y) \leq(1-\lambda) f(x)+\lambda f(y)$ for each $x, y \in \mathcal{H}$ and $0 \leq \lambda \leq 1$
(ii) σ-strongly convex if f is proper and $f-(\sigma / 2)\|\cdot\|^{2}$ is convex
(iii) β-smooth if f is differentiable and $\|\nabla f(x)-\nabla f(y)\| \leq \beta\|x-y\|$ for each $x, y \in \mathcal{H}$

Appendix - More preliminaries

- Let $0 \leq \sigma<+\infty$ and $0 \leq \beta \leq+\infty$. $\mathcal{F}_{\sigma, \beta}$ class of all functions $f: \mathcal{H} \rightarrow \mathbb{R} \cup\{+\infty\}$ that are proper, lower semicontinuous, σ-strongly convex and β-smooth (if $\beta<+\infty$)

- Let $f \in \mathcal{F}_{0, \infty}$ and $\gamma>0$. Then the proximal operator $\operatorname{prox}_{\gamma f}: \mathcal{H} \rightarrow \mathcal{H}$ is defined as the single-valued operator given by

$$
\operatorname{prox}_{\gamma f}(x)=\underset{z \in \mathcal{H}}{\operatorname{argmin}}\left(f(z)+\frac{1}{2 \gamma}\|x-z\|^{2}\right)
$$

for each $x \in \mathcal{H}$

- The convex conjugate of f, denoted $f^{*}: \mathcal{H} \rightarrow \mathbb{R} \cup\{+\infty\}$, is the proper, lower semicontinuous and convex function given by $f^{*}(u)=\sup _{x \in \mathcal{H}}(\langle u, x\rangle-f(x))$ for each $u \in \mathcal{H}$

Appendix - Some choices of (P, p, T, t, ρ)

Suppose $\rho \in\left[0,1\left[\right.\right.$, let e_{i} be i th standard basis vector and

$$
(P, p, T, t)=\left(\left[\begin{array}{lll}
C & D & -D
\end{array}\right]^{\top} e_{i} e_{i}^{\top}\left[\begin{array}{lll}
C & D & -D
\end{array}\right], 0,0,0\right) .
$$

Then

$$
\left\langle\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right),(P \otimes \operatorname{Id})\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right)\right\rangle+p^{\top}\left(\mathbf{F}_{k}-\mathbf{F}_{\star}\right)=\left\|y_{k}^{(i)}-y_{\star}\right\|^{2} \geq 0
$$

and the distance to the solution squared converges ρ-linear to zero.

Appendix - Some choices of (P, p, T, t, ρ)

Suppose $\rho=1, m=1$ and let

$$
(P, p, T, t)=(0,0,0,1)
$$

Then

$$
\left\langle\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right),(T \otimes \operatorname{Id})\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right)\right\rangle+t^{\top}\left(\mathbf{F}_{k}-\mathbf{F}_{\star}\right)=f_{1}\left(y_{k}^{(1)}\right)-f_{1}\left(y_{\star}\right) \geq 0
$$

which gives

- function value suboptimality converges to zero
- $\mathcal{O}(1 / k)$ ergodic function value suboptimality convergence (via Jensen's inequality)

Appendix - Some choices of (P, p, T, t, ρ)

Suppose $\rho=1$ and let

$$
(P, p, T, t)=\left(0,0,\left[\begin{array}{ccc}
C & D & -D \\
0 & 0 & I
\end{array}\right]^{\top}\left[\begin{array}{cc}
0 & -\frac{1}{2} I \\
-\frac{1}{2} I & 0
\end{array}\right]\left[\begin{array}{ccc}
C & D & -D \\
0 & 0 & I
\end{array}\right], \mathbf{1}\right)
$$

Then

$$
\begin{aligned}
\left\langle\left(\mathbf{x}_{k}\right.\right. & \left.\left.-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right),(T \otimes \operatorname{Id})\left(\mathbf{x}_{k}-\mathbf{x}_{\star}, \mathbf{u}_{k}, \mathbf{u}_{\star}\right)\right\rangle+t^{\top}\left(\mathbf{F}_{k}-\mathbf{F}_{\star}\right) \\
& =\sum_{i=1}^{m}\left(f_{i}\left(y_{k}^{(i)}\right)-f_{i}\left(y_{\star}^{(i)}\right)-\left\langle u_{\star}^{(i)}, y_{k}^{(i)}-y_{\star}^{(i)}\right\rangle\right) \\
& =\mathcal{L}\left(\mathbf{y}_{k}, \mathbf{u}_{\star}\right)-\mathcal{L}\left(\mathbf{y}_{\star}, \mathbf{u}_{k}\right) \geq 0
\end{aligned}
$$

where $\mathcal{L}: \mathcal{H}^{m} \times \mathcal{H}^{m} \rightarrow \mathbb{R}$ is a Lagrangian function giving

- duality gap converges to zero,
- $\mathcal{O}(1 / k)$ ergodic duality gap convergence (via Jensen's inequality).

Reduces to function value suboptimality when $m=1$.

[^0]: ${ }^{1}$ Parameters evaluated on a square grid of size 0.01×0.01 with the restriction that $\tau_{1}=\tau_{2} \geq 0.5$

[^1]: ${ }^{2}$ Model used in control literature, (Lessard et al., 2016), and similar to the model in (Morin et al., 2022).
 ${ }^{3}$ Let $M \in \mathbb{R}^{m \times n}$ and $\mathbf{z}=\left(z^{(1)}, \ldots, z^{(n)}\right) \in \mathcal{H}^{n}$. Then $(M \otimes \mathrm{Id}) \mathbf{z}=\left(\sum_{j=1}^{n}[M]_{1, j} z^{(j)}, \ldots, \sum_{j=1}^{n}[M]_{m, j} z^{(j)}\right)$.

[^2]: ${ }^{4}$ For the precise way to construct fixed points and extract solutions, see (Upadhyaya et al., 2023). This has been omitted from the presentation for clarity and simplicity

[^3]: ${ }^{6}$ Assuming dimension independence and Slater condition

[^4]: ${ }^{7}$ We use the same trick for C2 and C3

[^5]: ${ }^{8}$ Smallest ρ via bisection search

[^6]: ${ }^{9}$ Parameters evaluated on a square grid of size 0.01×0.01

