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Introduction
The course optimization for learning uses quite a lot of mathematics from basic analysis
and linear algebra. We have noticed that some students struggle with the material in this
course since they have forgotten much from earlier courses in mathematics.

This short document covers some elementary facts from set theory, logic, analysis, linear
algebra, probability theory, and methods of proof that we expect students taking the course
to know. If you are unsure of anything here, consider reading up on these subjects. Parts
written in small font size can be skipped in a first reading but are included for completeness
and for the more interested students.

The reference section at the end contains some resources that inspired parts of the contents
in this document.
Written by: Manu Upadhyaya, manu.upadhyaya@control.lth.se
Latest update: August 29, 2023
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Sets
Basic notation. Let A and B be sets. We say that a is an object or element of A if a is a
member of A and write this as

a ∈A.

If a is not a member of A we write

a /∈A.

The set containing no elements is called the empty set and is denoted as ∅. The set A is
said to be nonempty if A 6= ∅.

A set that only contains a single element, e.g., the set {a} that only contains the element
a, is called called a singleton. A singleton is an example of a nonempty set.

We say that A is a subset of B if every element of A is also a member of B and indicate
this by writing

A⊆B.

In particular, for any set A, the empty set ∅ and the set itself are always subsets of A. I.e.,

∅ ⊆A and A⊆A,

always hold. If A⊆B, we also write B ⊇A, which is read “B contains A”.

Suppose we are given some property that elements of A may or may not possess. How do
we form the set consisting of all elements of A having that property? Consider for example
the set of positive integers, i.e., the natural numbers, which is written as

N = {1,2,3, . . .},

and wish to select the even positive integers. We write the set of even positive integers as

{x ∈ N | x is even} .

The symbol “|” is read as “such that”. Sometimes the colon “:” is used in place of “|”.

Union and “or”. The set consisting of all elements of A together with all the elements of
B is called the union of A and B, and is denoted as A∪B. Formally, we define

A∪B = {x | x ∈A or x ∈B} .

The word “or” used in this context is always given the unambiguous interpretation as an
inclusive or, i.e., the statement “P or Q” means “P or Q, or both”. In particular, the set
A∪B consists of all the elements that belong to A or to B or to both. Clearly, the union
operation is commutative, i.e., A∪B =B∪A.

Intersection. The set that consists of all elements common to A and B is called the
intersection of A and B, and is denoted as A∩B. Formally, we define

A∩B = {x | x ∈A and x ∈B} .
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The intersection operation is also commutative, i.e., A∩B =B∩A.

Disjoint sets. Using the intersection operation, we may express the statement that A and
B have no elements is common by the equation

A∩B = ∅.

In such a case, we say that A and B are disjoint.

Set difference. The (set) difference of two sets, denoted by A\B, is defined as the set
consisting of those elements of A that not in B. Formally, we define

A\B = {x | x ∈A and x /∈B} .

Note that the set difference operation does not commute.

Complement. Suppose that there is some base set X such that A⊆X. Then complement
of A in X is defined as the set difference of X and A, i.e., X \A.

Cartesian product. We define the Cartesian product of the sets A and B, denoted by
A×B, to be the set of all ordered pairs or 2-tuples (a,b) for which a is an element of A
and b is an element of B. Formally, we define

A×B = {(a,b) | a ∈A and b ∈B} .

Note that this definition assumes that the concept of an ordered pair is already given, and
we simply take it as a primitive concept. Similarly, recall that the concept of a set was
assumed as given. In general, A×B is not equal to B×A. Unfortunately, the notation
(a,b) has another well-established meaning, i.e., denoting an open interval of the real
numbers R. However, this conflict in notation will cause no difficulty and the meaning will
be clear from context.

Collection of sets. We will sometimes refer to sets whose elements are sets as collections.
For instance, the collection whose elements are the subsets of A is called the power set of
A and is denoted by P(A). Formally, we define

P(A) =
{
Ã
∣∣∣ Ã⊆A} .

Arbitrary unions and intersections. Given a collection A of sets, the union of the elements
of A is defined by the equation⋃

A=
⋃
A∈A

A= {x | x ∈A for at least one A ∈ A} .

The intersection of the elements of A is defined by the equation⋂
A=

⋂
A∈A

A= {x | x ∈A for every A ∈ A} .

The for the particular case A= ∅, it is clear that ⋃
A∈A

A= ∅.

However, we leave
⋂
A∈AA undefined in this case for technical reasons.
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Logic
Statements. Defining precisely what is meant by a mathematical statement is surprisingly
difficult. Therefore, we will only provide a practical working definition. A statement is a
sentence that is either true or false, but not both.
Note that not all sentences are statements. E.g. consider the sentence

“This statement is false”.

Why is this not a statement?

Negation. The negation of statement P is the statement that is false when P is true, and
true when P is false. The negation of P is denoted as

not P.

The negation not P is sometimes written as ¬P . We may indicate the effect of the negation
operation with the following truth table:

P not P

True False
False True

We give here a simple example of a negation: Consider the statement a ∈A. The negation
is simply a /∈A.

“If ..., then ...” statements. Many statements have the following structure:

If P , then Q (1)

where

• P is a statement called the hypothesis or assumption, and

• Q is a statement called the conclusion.

A statement of the form (1) is called an implication. We say P implies Q and sometimes
write P ⇒Q. What is the logical value of the statement “if P , then Q”? This will depend
on the logical values of P and Q. We indicate it by the following truth table:

P Q If P , then Q

True True True
True False False
False True True
False False True

Vacuous truth. Pay special attention to the last two rows in the truth table above. E.g. consider the following
implication about real numbers x:

If x2 < 0, then x= 1.

Note that the hypothesis can never hold, but the statement is true, independent of the conclusion. Such implications
are said to be vacuously true.

Why do we care about vacuously true implications? Vacuously true implications are generally not of interest by
themselves, but they frequently arise in proofs as special cases.
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Let us see another example of a vacuous truth. We claimed previously that ∅ ⊆ A for any set A. But how do we
formally prove this? Writing ∅ ⊆A is a shorthand way of writing the statement, “For every object x, if x ∈ ∅, then
x ∈ A”. However, it is obvious that the statement x ∈ ∅ is not satisfied for any object x. Thus, ∅ ⊆ A is vacuously
true.

Converse. Consider the implication

P ⇒Q.

The converse of the above implication is the implication

Q⇒ P.

Equivalence. If P ⇒Q and its converse Q⇒ P are both true, we say that P and Q are
(logically) equivalent statements and write this statement as P ⇔Q. The sign ⇔ is read
as “if and only if” (abbreviated iff sometimes) and the statement is called a biconditional
statement.

If the equivalence P ⇔Q holds, we also say that P is a necessary and sufficient condition
for Q. In particular:

• A necessary condition is one which must hold for a conclusion to be true. It does
not guarantee that the result is true. Here, the Q⇒ P part is responsible for the
necessity.

• A sufficient condition is one which guarantees the conclusion is true. The conclusion
may be true even if the condition is not satisfied. Here, the P ⇒Q part is responsible
for the sufficiency.

Many theorems and exercises in the course will require that you prove that some particular
equivalence P ⇔Q holds. i.e., you will need to establish the validity of P ⇒Q and Q⇒ P .

Contrapositive. Consider the implication

P ⇒Q.

The contrapositive of the above implication is the implication

(not Q)⇒ (not P ).

One can show that an implication and its contrapositive are logically equivalent (prove it).
Why is this useful? In certain cases, it turns out easier to prove the contrapositive than
the original implication.

Quantifiers. Many statements include the phrases “for all” and “there exists”. Such phrases
are called logical quantifiers.

• The phrases “for all”, denoted by ∀, is known as the universal quantifier. Other
common equivalent ways of writing the phrase “for all” is “for every” and “for each’.

• The phrases “there exists”, denoted by ∃, is known as the existential quantifier.
Another common equivalent way of writing the phrase “there exists” is “for at least
one”.
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Let us see some examples of their usage. Let Z denote the integers, i.e.,

Z = {. . . ,−2,−1,0,1,2, . . .} .

• The statement “For all x in Z, x2 is greater or equal to 0” can be written symbolically
as ∀x ∈ Z, x2 ≥ 0.

• The statement “There exists an x in Z such that x2 is equal to 4” can be written
symbolically as ∃x ∈ Z, x2 = 4.

• For consecutive quantifiers of the same type we introduce a symbolic shorthand. E.g.
for the sentence “For all x in Z and for all y in Z, the sum x+y is in Z”, instead of
writing ∀x ∈ Z, ∀y ∈ Z, x+y ∈ Z, we write ∀x, y ∈ Z, x+y ∈ Z. The corresponding
rule for the existential quantifier and extensions to more than two quantifiers is
straightforward.

• It is possible to combine different quantifiers. E.g. consider the statement “For each
x in Z there exists a y in Z such that x+ y is equal to 0”. This can be written
symbolically as ∀x ∈ Z, ∃y ∈ Z, x+ y = 0. Note that the order of the quantifiers
matters in general.

Negation of quantifiers. Suppose that A is some set and that it is possible for each x in
A to construct a statement P (x), usually a condition on x. It is not hard to show that
(prove it)

• not (∀x ∈A, P (x))⇔∃x ∈A, (not P (x)), and

• not (∃x ∈A, P (x))⇔∀x ∈A, (not P (x)).

For convenience, we state these facts using sentences:

• The negation of the statement

“For all x ∈A, the statement P (x) holds”

is

“There exists an x ∈A such that the statement P (x) does not hold”.

• The negation of the statement

“There exists an x ∈A such that the statement P (x) holds”

is

“For all x ∈A, the statement P (x) does not hold”.

Why are these facts important, especially the first fact? In many problems, you will be
asked to determine if a statement ∀x ∈A, P (x) is true or false. Suppose that the statement
is in fact false. It is then sometimes convenient or easier to show that the negation is
true instead. I.e., to show that there exists an x ∈ A such that P (x) does not hold. In
particular, this x is then called a counterexample, i.e., an example that shows that the
statement is indeed false.
Next, we give the general rule to negate statements with multiple quantifiers. To negate a statement of the form

Q1x1 ∈A1, . . . , Qnxn ∈An, P (x1, . . . ,xn)

where Qi is ∀ or ∃, and Ai is a set, for each i ∈ {1, . . . ,n}, and P (x1, . . . ,xn) is a statement, do the following:
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(i) Change every ∀ to ∃ and every ∃ to ∀.

(ii) Replace P (x1, . . . ,xn) by its negation.

Functions
Definition. Given two sets X and Y , a function f from X to Y is a rule of assignment
between these two sets, denoted by f :X → Y . In particular, for each element x of the set
X, the function assigns a unique element, denoted by f(x), of the set Y . Here, x is called
the argument or input of the function, and f(x) is the value of the function at x.

Note that a function f : X → Y is only well-defined if the sets X and Y are explicitly
specified. The set X is called the domain of the function1 and Y is called the codomain of
the function.

Sometimes, we will define a function f :X → Y by using an arrow 7→ to show the action
of f on an element of X. E.g., the function “f : R→ R such that f(x) = x+ 2” can be
written as “x 7→ x+ 2 from R to R”.

Example: The simplest function is probably the identity function; given a set X, the
identity function on X, denoted Id, is defined as the mapping x 7→ x from X to X. Often,
the identity function Id is used without specifying the set X, but it is usually easily inferred
from the context.

Image. Let f : X → Y be a function and let A ⊆X. The image of A under f , written
f(A), is defined by

f(A) = {y ∈ Y | y = f(x) for at least one x in A} .

Pre-image. Let f :X → Y be a function and let B ⊆ Y . The pre-image or inverse image
of B under f , written f−1(B), is defined by

f−1(B) = {x ∈X | f(x) ∈B} .

Composition. Let g :X→ Y and f : Z→E such that Y ⊆ Z. The function f ◦g :X→E,
called the composition of f and g, and is defined by

(f ◦g)(x) = f(g(x))

for each x ∈X.
Restriction. Let f : X → Y be a function and let A ⊆ X. The restriction of f to A, written f |A, is the function
f |A :A→ Y defined by

f |A(x) = f(x)

for each x ∈A.

Injective, surjective and bijective. Let f :X→ Y be a function. We have the following definitions:

• The function f is said to be injective or one-to-one if

x1 6= x2⇒ f(x1) 6= f(x2)

for each x1,x2 ∈X, or equivalently,

f(x1) = f(x2)⇒ x1 = x2

for each x1,x2 ∈X. An injective function is sometimes called an injection.

1Do not confuse the domain of a function with the effective domain defined later in the course.
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• The function f is said to be surjective or onto if

∀y ∈ Y, ∃x ∈X, f(x) = y

or equivalently,

y ∈ Y ⇒∃x ∈X, f(x) = y.

A surjective function is sometimes called a surjection.

• If the function f is injective and surjective, we say that f is bijective. A bijective function is sometimes
called a bijection.

Binary operators. A binary operator on a set X is a function with domain X×X and codomain X.

Binary operators are usually written with infix notation, i.e., the placement of the operator is between the operands.
E.g. the standard addition operator + on R is a binary operator on R.

Sets revisited
Finite sets. A set A is said to be finite if it is empty or if there exists a bijective function

f :A→{1, . . . ,n}

for some n ∈ N. In the former case, we say that A has cardinality 0; in the latter case, we say that A has cardinality
n. We sometimes denote the cardinality of A by the symbol |A|.

We have the following fact: The cardinality of a finite set A is uniquely determined by A.

Infinite sets. A set A is said to be infinite if it is not finite. If there exists a bijective function

f :A→ N

we say that A is countably infinite.

Countable and uncountable sets. A set is said to be countable if it is either finite or countably infinite. A set that
is not countable is said to be uncountable or uncountably infinite.

Indexed family of sets. Let A be a nonempty collection of sets. An indexing function for A is a surjective function

f : I→A

for some nonempty set I called the index set. The collection A, together with the indexing function f , is called an
indexed family of sets.

Given i ∈ I, the set f(i) is typically denoted by some symbol Ai. Then, the indexed family of sets is typically
denoted by the symbol

{Ai}i∈I

dropping the reference to A and f altogether.

How do collections of sets and indexed families of sets differ? Roughly speaking, collections of sets do not allow
duplicate members, while indexed families of sets do.

Unions and intersections again. Let {Ai}i∈I be an indexed family of sets. We define⋃
i∈I

Ai = {a | ∃i ∈ I, a ∈Ai}

and ⋂
i∈I

Ai = {a | ∀i ∈ I, a ∈Ai}

as the union and intersections of the members of this family, respectively.
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There are two especially useful cases for the index set I. In the case of I = {1, . . . ,n} for some positive integer n, we
write the indexed family of sets as {Ai}ni=1. Sometimes, we simply write the indexed family of sets as A1, . . . ,An
and call it a (finite) sequence of sets. We write

n⋃
i=1

Ai and
n⋂
i=1

Ai

as the union and intersections of the members of this family, respectively.

Similarly, in the case of I = N, we write the indexed family of sets as {Ai}∞i=1. Sometimes, we simply write the
indexed family of sets as A1,A2, . . . and call it an (infinite) sequence of sets. We write

∞⋃
i=1

Ai and
∞⋂
i=1

Ai

as the union and intersections of the members of this family, respectively.

Cartesian product. We wish to generalize the concept of a Cartesian product beyond two sets.

First, we start with the finite case. Let n ∈N. Given a set X, we define an n-tuple of elements of X to be a function

x : {1, . . . ,n}→X.

Given an n-tuple x, for each i ∈ {1, . . . ,n},2 we often denote the value of x at i by xi rather than x(i), and call it
the ith coordinate of x. We often denote the function x itself by the symbol

(x1, . . . ,xn).

Next, let {Ai}ni=1 be an indexed family of sets. Let X =
⋃n

i=1Ai. The Cartesian product of this indexed family is
defined to be the set of all n-tuples of elements of X such that xi ∈Ai for each i ∈ {1, . . . ,n}, and is denoted by

n∏
i=1

Ai or A1×·· ·×An.

In the particular case that all of the members of the family are identical, i.e., Ai =A for each i ∈ {1, . . . ,n}, for some
set A, we denote the Cartesian product by

An.

Example: The set of all n-tuples of elements of R is denoted as Rn and is often called n-dimensional real space.

Second, we present the countably infinite case. Given a set X, we define an (infinite) sequence of elements of X to
be a function

x : N→X.

Given a sequence x, for each i ∈ N, we often denote the value of x at i by xi rather than x(i), and call it the ith
coordinate of x. We often denote the function x itself by the symbol

(xi)∞i=1 or (xi)i∈N.

Next, let {Ai}∞i=1 be an indexed family of sets. Let X =
⋃∞
i=1Ai. The Cartesian product of this indexed family is

defined to be the set of all sequences of elements of X such that xi ∈Ai for each i ∈ N, and is denoted by

∞∏
i=1

Ai.

Example: You have probably seen sequences of elements of R or even Rn before. In optimization, we often look at
algorithms that produce sequences (xi)∞i=1 of elements of Rn.

Third, it is possible to define the Cartesian product for the general case, which includes the uncountably infinite
case. However, this structure is not explicitly used in the course and is therefore excluded from this presentation.

2We will sometimes write the set membership i ∈ {1, . . . ,n} as i = 1, . . . ,n.
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Basic facts about R

We will simply assume that the reader is familiar with the real numbers R and the regular
operations and relations on them. However, we would like to highlight some properties of
R relevant for optimization.

Upper/lower bound. Let A⊆ R and b ∈ R.

• The element b is called an upper bound of A if a≤ b for every a ∈A. In such case, A
is said to be bound from above (by b) or that it has an upper bound. If A does not
have an upper bound, we say that A is unbounded above.

• The element b is called a lower bound of A if b≤ a for every a ∈A. In such case, A is
said to be bound from below (by b) or that it has a lower bound. If A does not have a
lower bound, we say that A is unbounded below.

If A is unbounded above or unbounded below, we say that A is unbounded.

Best bounds. Let A⊆ R and b ∈ R.

• The element b is called a least upper bound of A if b is an upper bound of A and
b≤ c for every upper bound c of A.

• The element b is called a greatest lower bound of A if b is a lower bound of A and
c≤ b for every lower bound c of A.

A least upper bound does not necessarily exists. However, if a least upper bound does
exist, it is unique (show it). A similar remark holds for the greatest lower bound.

R is complete. Every nonempty subset of R that has an upper bound has a least upper
bound. This property is called completeness or the least-upper-bound property.

One can show that this is equivalent to that every nonempty subset of R that has a lower
bound has a greatest lower bound. This equivalent property is called the greatest-lower-
bound property.

Supremum/infimum. Let A⊆ R.

• The supremum of A, denoted supA, is defined as

supA=


the least upper bound of A if A has an upper bound and A 6= ∅,
∞ if A is unbounded above,
−∞ if A= ∅.

• The infimum of A, denoted infA, is defined as

infA=


the greatest lower bound of A if A has a lower bound and A 6= ∅,
−∞ if A is unbounded below,
∞ if A= ∅.

Min/max. Let A⊆ R.

• If supA∈A, we say that the supremum of A is attained or achieved, and we sometimes
write supA as maxA.
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• If infA ∈A, we say that the infimum of A is attained or achieved, and we sometimes
write infA as minA.

If the set A is finite, the supremum and infimum of A are always attained.

Optimizing real-valued functions. Let f :X→R be a function for some set X. Let Y ⊆X.
We define the supremum of f over Y as

sup
y∈Y

f(y) = supf(Y )

and the infimum of f over Y as

inf
y∈Y

f(y) = inf f(Y ).

If the supremum or infimum above is attained, we sometimes write

max
y∈Y

f(y) = maxf(Y )

and

min
y∈Y

f(y) = minf(Y ),

respectively. Moreover, if the supremum is attained, we denote the set of elements in Y at
which the function f is maximized by Argmaxy∈Y f(y), also known as arguments of the
maxima, i.e.,

Argmax
y∈Y

f(y) = {y ∈ Y | f(y) = maxf(Y )}

and if the infimum is attained, we denote the set of elements in Y at which the function f
is minimized by Argminy∈Y f(y), also known as arguments of the minima, i.e.,

Argmin
y∈Y

f(y) = {y ∈ Y | f(y) = minf(Y )} .

Note that, given that they exists, Argmaxy∈Y f(y) and Argminy∈Y f(y) are subsets of Y .
If we know that they are singletons, we write the unique element in Argmaxy∈Y f(y) as

argmax
y∈Y

f(y)

and unique element in Argminy∈Y f(y) as

argmin
y∈Y

f(y).

In particular, given that they exists, argmaxy∈Y f(y) and argminy∈Y f(y) are elements of
Y .

Absolute value. The absolute value of a real number x ∈ R, denoted |x|, is defined by

|x|=
{
x if x≥ 0,
−x if x < 0.
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If x,y ∈ R, then

|x| ≤ y (|x|< y)

if and only if

−y ≤ x≤ y (−y < x < y).

Intervals and rays.

Let a,b ∈ R. There are four subsets of R that are called the intervals determined by a and
b. They are the following:

(a,b) = {x ∈ R | a < x < b}
(a,b] = {x ∈ R | a < x≤ b}
[a,b) = {x ∈ R | a≤ x < b}
[a,b] = {x ∈ R | a≤ x≤ b} .

The first interval is called an open interval in R, the middle two are called half-open
intervals in R and the last one is called a closed interval in R.

Moreover, there are four subsets of R that are called the rays determined by a. They are
the following:

(a,∞) = {x ∈ R | a < x}
(−∞,a) = {x ∈ R | x < a}

[a,∞) = {x ∈ R | a≤ x}
(−∞,a] = {x ∈ R | x≤ a} .

The first two rays are called open rays in R and the last two are called closed rays in R.
Sometimes, we do not distinguish between intervals and rays, and simply call both of them
intervals.

Extending the real line. In this course, we will sometimes work with the extended real
numbers3, i.e., R together with the infinite values ∞ and −∞. In this section, we extend
some arithmetic operations and relations in R to all of R∪{∞,−∞}.

The order between ∞ and −∞ is −∞<∞. We use the following order between elements
in R and {∞,−∞}:

−∞< x <∞
3To be precise, we will consider functions that take values in R∪{∞}. However, since R∪{∞} is a subset
of R∪{∞,−∞}, our discussion here applies.
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for each x ∈ R. We define

∞+x= x+∞=∞, ∀x ∈ R∪{∞},
x−∞= (−∞) +x=−∞, ∀x ∈ R∪{−∞},

λ∞=∞λ=∞, ∀λ ∈ (0,∞),
λ(−∞) = (−∞)λ=−∞, ∀λ ∈ (0,∞),

λ∞=∞λ=−∞, ∀λ ∈ (−∞,0),
λ(−∞) = (−∞)λ=∞, ∀λ ∈ (−∞,0),

0∞=∞0 = 0,
0(−∞) = (−∞)0 = 0,

∞+ (−∞) = (−∞) +∞=∞.

We also need to extend the definition of the supermum and infimum. Let A⊆R∪{∞,−∞}
and b ∈ R∪{∞,−∞}.

• The element b is called an upper bound of A if a≤ b for every a ∈A.

• The element b is called a lower bound of A if b≤ a for every a ∈A.

Note that every subset of R∪{∞,−∞} has an upper and lower bound in R∪{∞,−∞}.

• The element b is called a least upper bound of A if b is an upper bound of A and
b≤ c for every upper bound c of A. This number is denoted as supA.

• The element b is called a greatest lower bound of A if b is a lower bound of A and
c≤ b for every lower bound c of A. This number is denoted as infA.

Note that every subset of R∪{∞,−∞} has a least upper bound and greatest lower bound
in R∪{∞,−∞} and they are both necessarily unique.

• If supA∈A, we say that the supremum of A is attained or achieved, and we sometimes
write supA as maxA.

• If infA ∈A, we say that the infimum of A is attained or achieved, and we sometimes
write infA as minA.

Let f : X → R∪{∞,−∞} be a function for some set X. Let Y ⊆ X. We define the
supremum and infimum of f over Y completely analogous to the case of f : X → R,
but with our extended definitions of supremum and infimum, respectively. We extend
correspondingly the discussion if the supremum or infimum is attained.

Inner-product spaces
Vector spaces. A vector space over R, also known as a real vector space, is a set V of
elements called vectors, together with operations (x,y) 7→ x+ y from V×V to V and
(α,x) 7→ α ·x from R×V to V such that the following holds:

1. x+y = y+x for each x,y ∈ V,

2. x+ (y+z) = (x+y) +x for each x,y,z ∈ V,
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3. There exists in V a unique vector 0 (called the zeros vector) such that x+ 0 = x for
each x ∈ V,

4. For each x ∈ V, there exists a vector −x ∈ V such that x+ (−x) = 0,

5. (αβ) ·x= α · (β ·x) for each α,β ∈ R and for each x ∈ V,

6. 1 ·x= x for each x ∈ V,

7. α · (x+y) = α ·x+α ·y for each α ∈ R and for each x,y ∈ V,

8. (α+β) ·x= α ·x+β ·x for each α,β ∈ R and for each x ∈ V.

We will, of course, usually write αx in place of α ·x. Moreover, the elements in R are
usually called scalars. Thus, + is usually referred to as vector-vector addition and · as
scalar-vector multiplication.

Operations involving scalars, vectors, and sets. Let V be a real vector space, X,Y ⊆ V,
a ∈X and α ∈ R. We define:

αX = {αx | x ∈X}, scalar-set multiplication
a+X =X+a= {a+x | x ∈X}, vector-set addition
X+Y = {x+y | x ∈X,y ∈ Y }, Minkowski sum
X−Y = {x−y | x ∈X,y ∈ Y }. Minkowski difference

Linear subspace. Let V be a real vector space. A nonempty subset W of V is called a
linear subspace of V if

αx+βy ∈W

for each α,β ∈ R and for each x,y ∈W.

Note that all linear subspaces W of V are vector spaces when the operators + and · are
restricted to W×W and R×W, respectively.

Linear functions. Let V and W be two real vector spaces. A function L : V→W is called
linear if

L(αx+βy) = αL(x) +βL(y)

for each α,β ∈ R and for each x,y ∈ V.

Affine functions. Let V and W be two real vector spaces. A function T : V→W is called
affine if the function x 7→ T (x)−T (0) from V to W is linear.

Independence. Let V be a real vector space. A finite set of vectors {x1, . . . ,xn} ⊆V is said
to be linearly dependent if there exist scalars α1, . . . ,αn ∈ R not all zero, such that

n∑
i=1

αixi = 0.

If the finite set of vectors is not linearly dependent, it is said to be linearly independent.
Thus, the finite set of vectors is linearly independent if the equation

n∑
i=1

αixi = 0
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implies that

αi = 0

for each i= 1, . . . ,n.

Linear combination. Let V be a real vector space and let {x1, . . . ,xn} ⊆ V be a finite set
of vectors. A vector y ∈ V is said to be a linear combination of the finite set of vectors if
there exist scalars α1, . . . ,αn ∈ R such that

y =
n∑
i=1

αixi.

Basis and dimension. Let V be a real vector space and let A⊆ V. The family of vectors
A is said to be a (Hamel or algebraic) basis of V if

1. Every finite subset of vectors of A is linearly independent.

2. For every vector y ∈ V, there exists a finite subset of vectors from A such that y is a
linear combination of the finite subset of vectors.

The existence of a basis for every real vector space can be established using a result known
as Zorn’s lemma, which, although beyond the scope of this course, ensures the existence of
such bases. Moreover, it is well known that the number of vectors in all the bases of a real
vector space V is the same — this number is called the (Hamel or algebraic) dimension
of the space and is denoted by dimV. We will only work with finite-dimensional vector
spaces in this course. However, it is possible to study optimization in infinite dimensional
vector spaces.

Normed spaces. Let V be a real vector space. A norm on V is a function ‖·‖ : V→R such
that the following holds:

1. Positive definiteness: ‖x‖ ≥ 0 for each x ∈ V and ‖x‖= 0 if and only if x= 0.

2. Absolute homogeneity: ‖αx‖= |α|‖x‖ for each α ∈ R and each x ∈ V.

3. Subadditivity/triangle inequality: ‖x+y‖ ≤ ‖x‖+‖y‖ for each x,y ∈ V.

A real vector space V together with a norm ‖·‖ on V is called a normed vector space or
normed space. Such a normed vector space is sometimes written as (V,‖·‖). Sometimes,
the norm of a space V is denoted by ‖·‖V to emphasize the identity of the vector space
and to distinguish it from other norms.

A vector x ∈ V is said to be an unit vector or normalized if ‖x‖= 1.

Inner-product spaces. Let V be a real vector space. A inner product on V is a function
〈·, ·〉 : V×V→ R such that the following holds:

1. Linearity: 〈αx+βy,z〉= α〈x,z〉+β 〈y,z〉 for each α,β ∈ R and for each x,y,z ∈ V.

2. Commutativity/symmetry: 〈x,y〉= 〈y,x〉 for each x,y ∈ V.

3. Positive definiteness: 〈x,x〉 ≥ 0 for each x ∈ V and 〈x,x〉= 0 if and only if x= 0.

A real vector space V together with an inner product 〈·, ·〉 on V is called a inner-product
space. Such an inner-product space is sometimes written as (V,〈·, ·〉). Sometimes, the inner
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product of a space V is denoted by 〈·, ·〉V to emphasize the identity of the vector space and
to distinguish it from other inner products.

Two vectors x,y ∈ V are said to be orthogonal if

〈x,y〉= 0.

Note that every inner product on V induces a norm on V, called the canonical norm, that
is defined by

‖x‖=
√
〈x,x〉

for each x ∈ V. Prove that the canonical norm actually is a norm.

A finite sequence of vectors x1, . . . ,xn in V is said to be orthonormal if

〈xi,xj〉= δij

for each i, j = 1, . . . ,n, where δij is the Kronecker delta function defined by

δij =
{

1 if i= j,

0 otherwise

where the range of i and j is clear from context. I.e., the vectors are pairwise orthogonal
and normalized.

Cauchy-Schwarz inequality. Let (V,〈·, ·〉) be an inner-product space and let ‖·‖ be the
canonical norm. Then

|〈x,y〉| ≤ ‖x‖‖y‖ (2)

for each x,y ∈ V, with equality holding in (2) if and only if x and y are linearly dependent.
Moreover, if (2) holds with equality and y 6= 0, then

x= 〈x,y〉
‖y‖2

y.

Inequality (2) is called the Cauchy-Schwarz inequality.

Orthogonal complement. Let V be a real vector space and X ⊆ V. The orthogonal
complement of X, denoted X⊥, is defined as

X⊥ = {v ∈ V | ∀x ∈ X,〈v,x〉= 0}.

Notice that X⊥ is a linear subspace of V.

Complementary subspaces. Let V be a real vector space and X,Y ⊆ V be two linear
subspaces of V. The subspaces X and Y are said to be complementary whenever

V = X+Y and X∩Y = {0},

in which case V is said to be the direct sum of X and Y, and this is denoted by writing
V = X⊕Y. This is equivalent to that for each vector v ∈ V there are unique vectors x ∈ X
and y ∈ Y such that v = x+y.
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Real-valued vectors and matrices
n-dimensional real space Rn. The set Rn is the set of all n-tuples (x1, . . . ,xn) of elements
of R. We can write this as

Rn = {(x1, . . . ,xn) | ∀i ∈ {1, . . . ,n}, xi ∈ R} .

We use the convention that the n-tuple (x1, . . . ,xn) of elements of R can also be written as
a column vector, i.e., x1

...
xn


using standard matrix notation. This means that we identify vectors in Rn with matrices
in Rn×1. Rn is also a real vector space with vector-vector addition defined byx1

...
xn


︸ ︷︷ ︸
∈Rn

+

y1
...
yn


︸ ︷︷ ︸
∈Rn

=

x1 +y1
...

x1 +yn


︸ ︷︷ ︸
∈Rn

and scalar-vector multiplication defined by

α︸︷︷︸
∈R

x1
...
xn


︸ ︷︷ ︸
∈Rn

=

αx1
...

αxn


︸ ︷︷ ︸
∈Rn

.

The most common inner product on Rn is the dot product defined by

〈x,y〉= xT y =
n∑
i=1

xiyi (3)

for each x,y ∈ Rn, making Rn an inner-product space. The associated canonical norm is

‖x‖2 =

√√√√ n∑
i=1

x2
i (4)

for each x ∈ Rn, called the 2-norm. Thus, the Cauchy-Schwarz inequality (2) implies that(
n∑
i=1

xiyi

)2

≤
(

n∑
i=1

x2
i

)(
n∑
i=1

y2
i

)

for each (x1, . . . ,xn),(y1, . . . ,yn) ∈ Rn.

Rn comes with a standard basis, denoted by {e1, . . . ,en}, where ei is the vector whose ith
coordinate is one while all the others are zeros. The vector of all ones will be denoted by 1.

Subsets of Rn. Given a positive integer n ∈ N, we define
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• the nonnegative orthant as Rn+ = {(x1, . . . ,xn) | ∀i ∈ {1, . . . ,n}, xi ∈ [0,∞)},

• the positive orthant as Rn++ = {(x1, . . . ,xn) | ∀i ∈ {1, . . . ,n}, xi ∈ (0,∞)},

• the nonpositive orthant as Rn− = {(x1, . . . ,xn) | ∀i ∈ {1, . . . ,n}, xi ∈ (−∞,0]}, and

• the negative orthant as Rn−− = {(x1, . . . ,xn) | ∀i ∈ {1, . . . ,n}, xi ∈ (−∞,0)}.

Real-valued m×n matrices Rm×n. The set of all real-valued m×n matrices is denoted
by Rm×n. We will sometimes use the shorthand notation X = (Xij) for matrices in Rm×n,
where Xij is entry i, j of the matrix X. The range of i and j will always be clear from
context. We will also sometimes use the notation (X)ij to represent entry i, j of the matrix
X.

The set Rm×n is a real vector space with the component-wise addition as the vector-vector
addition and the component-wise scalar multiplication as the scalar-vector multiplication.
The most common inner product in Rm×n is defined by

〈X,Y 〉= Tr
(
XTY

)
=

m∑
i=1

n∑
j=1

XijYij

for each X,Y ∈Rm×n, making Rm×n an inner-product space. Here Tr is the trace operation
on matrices. The associated canonical norm is

‖X‖F =

√√√√ m∑
i=1

n∑
j=1

X2
ij (5)

for each X ∈ Rm×n, called the Frobenius norm. Thus, the Cauchy-Schwarz inequality (2)
implies that  m∑

i=1

n∑
j=1

XijYij

2

≤

 m∑
i=1

n∑
j=1

X2
ij

 m∑
i=1

n∑
j=1

Y 2
ij


for each X,Y ∈ Rm×n.

Trace. Let us for completeness define the trace operation and present some properties of
it. Suppose that A ∈Rn×n. The trace of the square matrix A, denoted Tr(A), is defined as

Tr(A) =
n∑
i=1

Aii

The following properties hold:

• Tr(αA+βB) = αTr(A) +βTr(B) for each α,β ∈ R and each A,B ∈ Rn×n.

• Tr(A) = Tr(AT ) for each A ∈ Rn×n.

• Tr(AB) = Tr(BA) for each A ∈ Rm×n and each B ∈ Rn×m.

• In particular, the last point implies that the trace operation is invariant under cyclic
permutations i.e.,

Tr(ABC) = Tr(BCA) = Tr(CAB)

for each A ∈ Rm×n, for each B ∈ Rn×l and for each C ∈ Rl×m.
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Hadamard product. Suppose that A,B ∈ Rm×n. The Hadamard product of A and B,
denoted A�B, is defined as the element-wise product

(A�B)ij =AijBij .

Kronecker product. Suppose that A ∈ Rm×n and B ∈ Rp×q. The Kronecker product of A
and B, denoted A⊗B, is defined by

A⊗B =

A11B · · · A1nB
... . . . ...

Am1B · · · AmnB

 ,
using block matrix notation.

Range. Let A ∈ Rm×n. The range of A, denoted by R(A), is defined by

R(A) = {Ax | x ∈ Rn} .

Note that R(A) is a linear subspace of Rm.

Nullspace. Let A ∈ Rm×n. The nullspace or kernel of A, denoted by N (A), is defined by

N (A) = {x ∈ Rn |Ax= 0} .

Note that N (A) is a linear subspace of Rn.

Orthogonal decomposition theorem. Let A ∈ Rm×n. Then

R(A)⊥ =N
(
AT
)

and N (A)⊥ =R
(
AT
)
.

Moreover,

Rm =R(A)⊕N
(
AT
)

and Rn =N (A)⊕R
(
AT
)
.

Rank. Let A ∈ Rm×n. The rank of A, denoted by rank(A), is defined by

rank(A) = dimR(A).

The rank of A is equal to

• the maximum number of linearly independent columns of A, and

• the maximum number of linearly independent rows of A.

The matrix A is said to have full rank if rank(A) = min(m,n). The matrix A is said to be
rank-deficient if it does not have full rank.

We have the following properties:

• rank(A) = 0 if and only if A= 0, for each A ∈ Rm×n.

• rank(A)≤min(m,n), for each A ∈ Rm×n.

• rank(cA) = rank(A), for each c ∈ R\{0} and for each A ∈ Rm×n.
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• If rank(A) = n, then rank(AB) = rank(B) for each A ∈ Rm×n and each B ∈ Rn×p.

• If rank(B) = n, then rank(AB) = rank(A) for each A ∈ Rm×n and each B ∈ Rn×p.

• The rank function is subadditive, i.e., rank(A+B) ≤ rank(A) + rank(B), for each
A,B ∈ Rm×n.

• rank(A) = rank(AT ) = rank(ATA) = rank(AAT ), for each A ∈ Rm×n.

Rank–nullity theorem. Let A ∈ Rm×n. Then

rank(A) + dimN (A) = n and rank(A) + dimN
(
AT
)

=m.

Invertibility. Let A ∈ Rn×n. The square matrix A is called invertible or nonsingular or
nondegenerate if there exists an matrix B ∈ Rn×n such that

AB =BA= I,

where I denotes the identity matrix of comfortable size. If this is the case, the matrix B is
uniquely determined by A, and is called the (multiplicative) inverse of A, denoted by A−1.
A square matrix that is not invertible is called singular or degenerate.

Next follows a list of equivalent statements that is useful to determine if the matrix A is
invertible or not.

• A is invertible.

• The determinant of A is nonzero, i.e., detA 6= 0.

• A has full rank, i.e., rank(A) = n.

• The nullspace of A is trivial, i.e., N (A) = {0}.

• The columns of A are linearly independent.

• The rows of A are linearly independent.

• The transpose AT is an invertible matrix.

Furthermore, if A is invertible, the following properties hold:

• (A−1)−1 =A.

• (αA)−1 = α−1A−1 for each α ∈ R\{0}.

• (AT )−1 = (A−1)T .

• detA−1 = (detA)−1.

• (AB)−1 =B−1A−1 for each invertible B ∈ Rn×n.

Symmetric matrices. A square matrix A ∈ Rn×n is said to be symmetric if A=AT .

Orthogonal matrices. A matrix U ∈Rm×n is said to be orthogonal if UTU = I. Note that
we must have m≥ n. If U is square, i.e., m= n, then

UTU = UUT = I

and consequently U−1 = UT .
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Eigenvalues and eigenvectors. Let A ∈ Rn×n be a square matrix and let x ∈ Cn \{0} be
a nonzero vector (the set C denotes the set of complex numbers, which we assume the
reader is familiar with). Suppose that

Ax= λx,

for some λ ∈ C. Then λ is said to be an eigenvalue of A and x is said to be an eigenvector
of A corresponding to λ.

The spectrum of the matrix A is the set of its eigenvalues, i.e.,

{λ ∈ C | ∃x ∈ Cn \{0}, Ax= λx} .

The spectrum of A can be found by solving the characteristic equation of A, i.e.,

det(A−λI) = 0

for λ ∈ C. The characteristic equation will always have n solutions, counting multiplicity.
Denote these by λ1, . . . ,λn. Then the following holds:

• TrA=
∑n
i=1λi.

• detA=
∏n
i=1λi.

• A is invertible if and only if λi 6= 0 for each i = 1, . . . ,n. If A is invertible, the
eigenvalues of A−1 are λ−1

1 , . . . ,λ−1
n , counting multiplicity.

The spectral radius of A, denoted ρ(A), is defined as the maximum modulus of the
eigenvalues of A, i.e.,

ρ(A) = max
i=1,...,n

|λi| .

Eigendecomposition. Let A ∈ Rn×n and suppose that q1, . . . , qn are linearly independent
eigenvectors of A with corresponding eigenvalues λ1, . . . ,λn. Then we can decompose A as

A=QΛQ−1 (6)

where

Q=
[
q1 · · · qn

]
and

Λ = diag(λ1, . . . ,λn).

The factorization in (6) is called an eigendecomposition or spectral decomposition of A.
Note that the eigendecomposition is not unique.

If in addition A is invertible, the inverse of A can be calculated as

A−1 =QΛ−1Q−1.

Spectral theorem for real symmetric matrices. Let A ∈ Rn×n. When can we guarantee
the existence of n linearly independent eigenvectors of A in the eigendecomposition above?
Here we give a condition:
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If A is symmetric, then A has n orthonormal (and thus linearly independent) real eigen-
vectors q1, . . . , qn ∈ Rn \{0} with corresponding real eigenvalues λ1, . . . ,λn ∈ R, and can be
decomposed as

A=QΛQT =
n∑
i=1

λiqiq
T
i , (7)

where

Q=
[
q1 · · · qn

]
is orthogonal, i.e., QQT =QTQ= I, and

Λ = diag(λ1, . . . ,λn).

We will order the eigenvalues as λ1 ≥ . . . ≥ λn. Moreover, sometimes we denote the ith
eigenvalue of A by λi(A), the largest eigenvalue of A by λmax(A), and the smallest eigenvalue
of A by λmin(A).

Variational characterization of eigenvalues. Let A ∈ Rn×n by symmetric. Then

λmin(A)xTx≤ xTAx≤ λmax(A)xTx

for each x ∈ Rn. Moreover,

λmax(A) = max
{
xTAx

∣∣∣ x ∈ Rn,‖x‖2 = 1
}
,

λmin(A) = min
{
xTAx

∣∣∣ x ∈ Rn,‖x‖2 = 1
}
.

Comparing eigenvalues. Suppose that A,B ∈ Rn×n are symmetric. Then

λi(A) +λmin(B)≤ λi(A+B)≤ λi(A) +λmax(B)

for each i= 1, . . . ,n.

Definiteness. Let A ∈ Rn×n be symmetric. We make the following definitions:

• A is positive definite if xTAx > 0 for each x ∈ Rn \{0}. We denote this by A� 0.

• A is positive semidefinite if xTAx≥ 0 for each x ∈ Rn. We denote this by A� 0.

• A is negative definite if xTAx < 0 for each x ∈ Rn \{0}. We denote this by A≺ 0.

• A is negative semidefinite if xTAx≤ 0 for each x ∈ Rn. We denote this by A� 0.

• A is indefinite is A is neither positive semidefinite nor negative semidefinite.

One can show that:

• A is positive definite if and only if all of its eigenvalues are positive,

• A is positive semidefinite if and only if all of its eigenvalues are non-negative,

• A is negative definite if and only if all of its eigenvalues are negative,

• A is negative semidefinite if and only if all of its eigenvalues are non-positive, and
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• A is indefinite if and only if it has both positive and negative eigenvalues.

The set Sn and some subsets. We denote the set of n×n real symmetric matrices as Sn,
i.e.,

Sn =
{
A ∈ Rn×n

∣∣∣A=AT
}
.

Note that Sn is a linear subspace of Rn×n. We denote

• the set of n×n positive definite matrices as Sn++ = {A ∈ Sn |A� 0},

• the set of n×n positive semidefinite matrices as Sn+ = {A ∈ Sn |A� 0},

• the set of n×n negative definite matrices as Sn−− = {A ∈ Sn |A≺ 0},

• the set of n×n negative semidefinite matrices as Sn− = {A ∈ Sn |A� 0},

Matrix inequalities. Let A,B ∈ Sn. We use the notation A≺B to mean B−A� 0, and
so on. These are called matrix inequalities.

Symmetric square root. Let A ∈ Sn+ and suppose that A = Qdiag(λ1, . . . ,λn)QT is an
eigendecomposition as in (7). We define the symmetric square root of A as

A1/2 =Qdiag(
√
λ1, . . . ,

√
λn)QT .

Note that A1/2 is a symmetric matrix that solves the equation A=X2 for X.

Singular value decomposition. Let A ∈ Rm×n such that rank(A) = r. Then A can be
expressed as

A= UΣV T =
r∑
i=1

σiuiv
T
i (8)

where

U =
[
u1 · · · ur

]
∈ Rm×r

such that U is orthogonal,

V =
[
v1 · · · vr

]
∈ Rn×r

such that V is orthogonal,

Σ = diag(σ1, . . . ,σr)

such that σ1 ≥ . . . ≥ σr > 0. The factorization is called a (compact-form) singular value
decomposition of A, the positive numbers σi are called the singular values of A, vectors
ui are called the left singular vectors of A, and vi the right singular vectors of A. These
satisfy

Avi = σiui and uTi A= σiv
T
i

for each i= 1, . . . , r. Moreover,

σ2
i = λi

(
AAT

)
= λi

(
ATA

)
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for each i= 1, . . . , r, and ui, vi are eigenvectors of ATA and of AAT , respectively.

Sometimes, we denote the ith singular value of A by σi(A), the largest singular value of A
by σmax(A) and the smallest singular value of A by σmin(A).

Remark. Given a singular value decomposition (8) of A, we see that rank(A) = r, i.e., the
rank of A is equal the number of singular values.

Norms on Rn. In this section we introduce some standard norms on Rn. We have previously
seen the 2-norm in (4). We generalize this to the p-norm, defined by

‖x‖p =
{

(
∑n
i=1 |xi|

p)1/p , if p ∈ [1,∞),
max{|xi| | i= 1, . . . ,n} , if p=∞

for any x ∈ Rn. Particular important cases, besides the 2-norm, are the 1-norm or taxicab
norm or Manhattan norm or sum-absolute-value norm (i.e., p= 1)

‖x‖1 =
n∑
i=1
|xi|

and the ∞-norm or Chebyshev norm (i.e., p=∞)

‖x‖∞ = max{|xi| | i= 1, . . . ,n} .

Let H ∈ Sn++. We have previously seen the dot product in (3) as an example of an inner
product on Rn. Another useful option is the H-inner product, defined by

〈x,y〉H = xTHy

for each x,y ∈ Rn. The associated canonical norm is the H-norm, given by

‖x‖H =
√
xTHx

for each x ∈ Rn.

Equivalence of norms. It is well-known in analysis that all norms on a finite-dimensional
vector space are equivalent. E.g., suppose that ‖·‖a and ‖·‖b are norms on Rn. Then ‖·‖a
and ‖·‖b are said to be equivalent if there exists positive constants α and β such that

α‖x‖a ≤ ‖x‖b ≤ β ‖x‖a

for each x ∈ Rn.

In particular, all norms on a finite-dimensional vector space generate the same topology,
e.g., they define the same open set, the same set of convergent sequences, the same set of
continuous functions, etc. Some of these concepts will be defined later in the document.

Norms on Rm×n. Let A ∈ Rm×n such that rank(A) = r.

• We have already seen the Frobenius norm in (5). However, since we introduced
eigenvalues and singular values, we have an alternative expression for the Frobenius
norm of A, i.e.,

‖A‖F =
√

Tr(ATA) =

√√√√ n∑
i=1

λi (ATA) =

√√√√ r∑
i=1

(σi (A))2.

24



• Suppose that ‖·‖a is a norm on Rm and ‖·‖b is a norm on Rn. The induced matrix
norm or operator norm, denoted ‖·‖a,b, on Rm×n is defined by

‖A‖a,b = max{‖Ax‖a | x ∈ Rn, ‖x‖b ≤ 1} .

This definition implies that

‖Ax‖a ≤ ‖A‖a,b ‖x‖b

for each x ∈ Rn. We refer to the matrix norm ‖·‖a,b as the (a,b)-norm. When a= b,
we will simply refer to it as an a-norm and omit one of the subscripts in its notation,
that is, use the notation ‖·‖a instead of ‖·‖a,a. Here follows some important examples
of induced matrix norms:

� The 2-norm on Rm×n (i.e., a= 2) is given by

‖A‖2 = ‖A‖2,2 =
√
λmax (ATA) = σmax(A).

The 2-norm on Rm×n is sometimes also called the spectral norm.

� The 1-norm on Rm×n (i.e., a= 1) is given by

‖A‖1 = ‖A‖1,1 = max
j=1,...,n

m∑
i=1
|Aij | .

The 1-norm on Rm×n is sometimes also called the maximum absolute column
sum norm.

� The ∞-norm on Rm×n (i.e., a=∞) is given by

‖A‖∞ = ‖A‖∞,∞ = max
i=1,...,m

n∑
j=1
|Aij | .

The ∞-norm on Rm×n is sometimes also called the maximum absolute row sum
norm.

In general, for each (a,b)-norm on Rm×n, we have that

ρ(A)≤
∥∥∥Ak∥∥∥1/k

a,b

for each k ∈N, where ρ(A) is the spectral radius of A. Moreover, we have the spectral
radius formula or Gelfand’s formula, i.e.,

ρ(A) = lim
r→∞

‖Ar‖1/ra,b .

• Let

σ(A) =
[
σ1(A) · · · σr(A)

]T
∈ Rr++

and let p ∈ [1,∞)∪{∞}. The Schatten p-norm on Rm×n, denoted as ‖·‖Sp , is defined as

‖A‖Sp = ‖σ(A)‖p .

Here follows some important examples of Schatten p-norms:
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� The Schatten 2-norm on Rm×n (i.e., p= 2) is given by

‖A‖S2
=

√√√√ r∑
i=1

(σi (A))2 = ‖A‖F

which coincides with the Frobenius norm.

� The Schatten 1-norm on Rm×n (i.e., p= 1) is given by

‖A‖S1
=

r∑
i=1

σi(A).

The Schatten 1-norm on Rm×n is sometimes also called the nuclear norm and is sometimes also
denoted as ‖·‖∗.

� The Schatten ∞-norm on Rm×n (i.e., p=∞) is given by

‖A‖S∞
= σmax(A) = ‖A‖2

which coincides with the spectral norm.

• Let k ∈ {1, . . . , r}. The Ky Fan k-norm on Rm×n, denoted as ‖·‖〈k〉, is defined as

‖A‖〈k〉 =
k∑
i=1

σi(A).

Note that the Ky Fan r-norm and nuclear norm coincide, and so do the Ky Fan 1-norm and the spectral
norm.

Some analysis
Open balls. For each x ∈ Rn and each real number r > 0, the open ball centered at x with
radius r, denoted by B(x,r), is defined as

B(x,r) = {y ∈ Rn | ‖x−y‖2 < r} .

Open sets. A subset X of Rn is called open if for each x ∈X, there exists a real number
r > 0 such that

B(x,r)⊆X.

The empty set ∅ is (vacuously) open and the entire space Rn is open. One can show that
arbitrary unions of open set are open, and that finite intersections of open sets are open.

Boundedness. A subset X of Rn is called bounded if there exists an x ∈ Rn and a real
number R> 0 such that

X ⊆B(x,R),

i.e., if the set is contained in some open ball. Equivalently, the set X is bounded if there
exists a real number M > 0 such that

‖x‖2 ≤M

for each x ∈X. If X is not bounded, we say that X is unbounded.
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A sequence (xk)∞k=1 of elements of Rn is called bounded if the set {xk | k ∈ N} is bounded.

Closed sets. A subset of Rn is called closed if the complement in Rn is open.

Hence, both the set ∅ and Rn are closed4. One can show that arbitrary intersections of
closed sets are closed and that finite unions of closed sets are closed.

Limit of sequences. Let (xk)∞k=1 be a sequence of elements of Rn and x̄ ∈Rn. We say that
x̄ is a limit of the sequence (xk)∞k=1, denote by

lim
k→∞

xk = x̄ or xk→ x̄ as k→∞ or xk −−−→
k→∞

x̄,

if for each ε > 0, there exists K ∈ N such that

‖xk− x̄‖2 < ε

for each integer k ≥K.

A sequence of elements of Rn is said to converge and to be a convergent sequence if it has
a limit. In such a case, the limit is always unique.

Squeeze theorem. Suppose that (ak)∞k=1,(bk)∞k=1 and (ck)∞k=1 are sequences of elements of
R and

lim
k→∞

ak = lim
k→∞

ck = l

for some real number l ∈ R. If there exists K ∈ N such that

ak ≤ bk ≤ ck

for each integer k ≥K, then

lim
k→∞

bk = l.

This result is known as the squeeze theorem. It is also known as the pinching theorem, the
sandwich rule, the police theorem and the between theorem.

Characterization of closed sets. A subset X of Rn is closed if and only if the limit of
every convergent sequence of elements of X is contained in X.

Compact sets. A subset of Rn is called compact if it is closed and bounded.

Interior of a set. Let X ⊆ Rn and x ∈X. The element x is called an interior point of X
if there exists an ε > 0 such that

B(x,ε)⊆X

i.e., there exists an open ball centered at x that is contained in X. The set of all interior
point of X, denoted intX, is called the interior of X, i.e.,

intX = {x ∈X | ∃ε > 0, B(x,ε)⊆X} .
4Thus, the sets ∅ and Rn are both open and close. Sets that are both open and closed are sometimes called
clopen.
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Closure of a set. Let X ⊆ Rn. The closure of X, denoted as clX, is defined as

clX = {x ∈ Rn | ∀ε > 0, ∃y ∈X, ‖x−y‖2 < ε} .

The closure of X is also given by clX = Rn \ int(Rn \X).

Boundary of a set. Let X ⊆ Rn. The boundary of X, denoted as bdX, is defined as

bdX = clX \ intX.

Elements of bdX are called boundary points of X.

We can characterize closed and open sets using the boundary: X is closed if it contains its
boundary, i.e., bdX ⊆X. It is open if it contains no boundary points, i.e., X ∩bdX = ∅.

Affine sets. Let V ⊆ Rn.

• The set V is said to be affine if

αx+ (1−α)y ∈ V

for each x,y ∈ V and each α ∈ R.

• If x1, . . . ,xm ∈ Rn and α1, . . . ,αm ∈ R such that
∑m
i=1αm = 1, we say that the point

m∑
i=1

αixi

is an affine combination of the points x1, . . . ,xm.

• Using induction, one can show that every affine set V contains every affine combination
of the points of V .

• One can show that arbitrary intersections of affine sets are affine.

• If V is affine and x0 ∈ V , then the set

S = V −x0

is a linear subspace of Rn. Thus, the affine set V can be written as

V = S+x0,

i.e., as a linear subspace plus an offset. Note that S does not depend on the choice
of x0. The set S is sometimes called the linear subspace parallel to V .

Affine hull. Let X ⊆ Rn. The affine hull of X, denoted affX, is defined by

affX =
{

m∑
i=1

αixi

∣∣∣∣∣m ∈ N, (x1, . . . ,xm) ∈Xm, (α1, . . . ,αm) ∈ Rm,
m∑
i=1

αi = 1
}
.

One can show that affX is equal to the smallest affine set containing X, i.e.,

affX =
⋂
{A⊆ Rn |X ⊆A, A affine}.
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Relative interior. Let X ⊆ Rn. The relative interior of X, denoted relintX, is defined by

relintX = {x ∈X | ∃ε > 0, B(x,ε)∩affX ⊆X}.

I.e, the relative interior of X is its interior relative to the affine hull of X.

Relative boundary. Let X ⊆ Rn. The relative boundary of X, denoted relbdX, is defined
by

relbdX = clX \ relintX.

Monotone sequences. A sequence (xk)∞k=1 of elements of R is called

• nondecreasing if xk ≤ xk+1 for each k ∈ N,

• increasing if xk < xk+1 for each k ∈ N,

• nonincreasing if xk ≥ xk+1 for each k ∈ N,

• decreasing if xk > xk+1 for each k ∈ N, and

• monotone if it is either nondecreasing or nonincreasing.

Monotone convergence theorem. Every monotone sequence of real numbers converges if
and only if the sequence is bounded.

Continuity. Let X ⊆ Rn and f :X → Rm. Let x0 ∈X. We say that f is continuous at x0
if for each ε > 0, there exists δ > 0 such that

‖f(x)−f(x0)‖2 < ε

whenever x ∈X and satisfies ‖x−x0‖2 < δ.

We have an alternative characterization of continuity. The function f is continuous at x0
if and only if

f(xk)→ f(x0) as k→∞

for each sequence (xk)∞k=1 of elements of X that converges and has x0 as its limit.

We say that the function f is continuous if f is continuous at x0 for each x0 ∈X.

Limit of functions. Let X ⊆ Rn, f :X → Rm, x0 ∈ clX and f̄ ∈ Rm. We say that f has
limit f̄ as x approaches x0 and denote this by

lim
x→x0

f(x) = f̄ or f(x)→ f̄ as x→ x0 or f(x)−−−→
x→x0

f̄

if for each ε > 0, there exists δ > 0 such that∥∥∥f(x)− f̄
∥∥∥

2
< ε

whenever x ∈ X and satisfies 0 < ‖x−x0‖2 < δ. Note that if f̄ is the limit of f as x
approaches x0, then f̄ is the unique limit of f as x approaches x0.

One can check that f has limit f̄ as x approaches x0 if and only if

lim
xk→x0

f(xk) = f̄
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for each sequence (xk)∞k=1 of elements of X, all different from x0, such that limk→∞xk = x0.

Differentiability. Let X ⊆ Rn, f :X → Rm and x ∈ intX. We say that f is differentiable
at x if there exists a matrix B ∈ Rm×n such that

f(x+h)−f(x)−Bh
‖h‖2

→ 0 as h→ 0. (9)

In such a case, the matrix B is unique and is called the derivative of f at x, and is denoted
Df (x). It is not hard to show that if f is differentiable at x, then f is continuous at x.

We say that f is differentiable if X is open and f is differentiable every point in X. In
such a case, the derivative of f can be seen as a function Df :X→Rm×n with value Df (x)
at x ∈X.

Linearity of derivative. Let X ⊆ Rn and f,g :X→ Rm. Let x ∈ intX and suppose that f
and g are both differentiable at x. Let α,β ∈R. Then the function αf +βg is differentiable
at x and

Dαf+βg(x) = αDf (x) +βDg(x).

Partial derivatives. Let X ⊆Rn and let f :X→R be a real-valued function. Let x ∈ intX.
We define the jth partial derivative of f at x, denoted by ∂

∂xj
f(x), to be

∂

∂xj
f(x) = lim

t→0

f(x+ tej)−f(x)
t

provided the limit exists.

Calculating the derivative. Let X ⊆ Rn and f : X → Rm. Let fi : X → R be the ith
component function of f , i.e.,

f(x) =

 f1(x)
...

fm(x)


for each x ∈X. Let x ∈ intX. Then:

• The function f is differentiable at x if and only if each component function fi is
differentiable at x.

• If the function f is differentiable at x, then

(Df (x))ij = ∂

∂xj
fi(x)

for each i= 1, . . . ,m and j = 1, . . . ,n.

Example: Let f : Rn→ Rm such that

f(x) =Ax+ b

for each x ∈ Rn, where A ∈ Rm×n and b ∈ Rm. Then

Df (x) =A
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for each x ∈ Rn.
The Jacobian. Let X ⊆Rn and f :X→Rm. Let x∈ intX. Suppose that the jth partial derivative of the component
function fi at x exists, for each i= 1 . . . ,m and each j = 1, . . . ,n. Then the Jacobian of f at x exists, is denoted as
Jf (x), and is the matrix in Rm×n defined by

(Jf (x))ij =
∂

∂xj
fi(x)

for each i= 1, . . . ,m and j = 1, . . . ,n.

Note that if the derivative of f at x exists, it is equal to the Jacobian of f at x. However, it is possible for the partial
derivatives, and hence the Jacobian, to exist, without it following that f is differentiable at x. This fact leaves us in
something of a quandary. We have no convenient way to determine whether or not a function is differentiable (other
than going back to the definition). However, the following result provides a useful criterion for differentiability:

Let X ⊆ Rn, X open and f :X→ Rm. Suppose that the jth partial derivative of the component function fi exists
at each point x of X and are continuous on X, for each i= 1 . . . ,m and for each j = 1, . . . ,n. Then f is differentiable
at each point of X.

The gradient. Let X ⊆ Rn, f :X → R, x ∈ intX and suppose that f is differentiable at x.
Since f is real-valued, the derivative Df (x) at x is a 1×n matrix, i.e., a row vector. The
transpose of the derivative Df (x) at x is called the gradient of f at x and is denoted by
∇f(x), i.e.,

∇f(x) =Df (x)T .

From the above, we know that we can calculate the gradient by

(∇f(x))i = ∂

∂xi
f(x)

for each i= 1, . . . ,n.

If f is differentiable, the gradient mapping is the function ∇f :X → Rn with value ∇f(x)
at x, for each x ∈X.

Example: Let f : Rn→ R such that

f(x) = 1
2x

TPx+ qTx+ r

for each x ∈ Rn, where P ∈ Sn, q ∈ Rn and r ∈ R. Then

∇f(x) = Px+ q

for each x ∈ Rn.

The chain rule. Let X ⊆ Rn and f :X → Rm. Let Y ⊆ Rm such that f(X)⊆ Y and let
g : Y → Rp. Let x ∈ intX and f(x) ∈ intY . Suppose that f is differentiable at x and that
g is differentiable at f(x). Then the composition g ◦f is differentiable at x and

Dg◦f (x) =Dg(f(x))Df (x).

Example: Suppose that f : Rn→ Rm is differentiable, A ∈ Rn×p and b ∈ Rn. Define the
function g : Rp→ Rm such that

g(x) = f(Ax+ b)
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for each x ∈ Rp. Then g is differentiable with derivative

Dg(x) =Df (Ax+ b)A

for each x ∈ Rp, and therefore has the gradient

∇g(x) =AT∇f(Ax+ b)

for each x ∈ Rp.
Higher-order partial derivatives. Note that partial derivatives may have partial derivatives, which themselves might
have partial derivatives, and so on. Let us give this a notation. Let X ⊆ Rn and f :X→ Rm. Let x ∈ intX. Given
i∈ {1, . . . ,m}, the kth-order partial derivatives of component function fi at x, each one denoted by ∂k

∂x
α1
j1
...∂x

αl
jl

fi(x),

is defined by

∂k

∂xα1
j1
. . .∂x

αl
jl

fi(x) =
∂

∂xj1
. . .

∂

∂xj1︸ ︷︷ ︸
α1 times

. . .
∂

∂xjl
. . .

∂

∂xjl︸ ︷︷ ︸
αl times

fi(x)

provided that it exists, for each l ∈ {1, . . . ,n}, for each j1, . . . , jl ∈ {1, . . . ,n} and for each α1, . . . ,αl ∈ {1, . . . ,k} such
that

∑l

o=1αo = k.

Let k ∈ N. If all the partial derivatives of order less than or equal to k, of all the component functions of f exist
for each point in X and they are continuous on X, we say that f is k-times continuously differentiable on X and
sometimes denote the class of functions with this property by Ck(X,Rm). This is in fact equivalent to that the
kth-order derivative of f exists and is continuous.

We have the following result, as the reader may recall: Let X ⊆ Rn be open and let f :X→ R be twice continuously
differentiable (i.e., 2-times continuously differentiable) on X. Then

∂2

∂xi∂xj
f(x) =

∂2

∂xj∂xi
f(x)

for each x ∈X and for each i, j ∈ {1, . . . ,n}.

The Hessian. Let X ⊆ Rn be open and let f :X → R be a real-valued function. Suppose
that the gradient mapping ∇f :X → Rn exists and is differentiable at x ∈X. Then the
Hessian of f at x is the symmetric matrix in Rn×n, denoted by ∇2f(x), defined by

∇2f(x) =D∇f (x)

and is equal to

(∇2f(x))i,j = ∂2

∂xj∂xi
f(x) (10)

for each i, j ∈ {1, . . . ,n}.

Example: Let f : Rn→ R such that

f(x) = 1
2x

TPx+ qTx+ r

for each x ∈ Rn, where P ∈ Sn, q ∈ Rn and r ∈ R. Then

∇2f(x) = P

for each x ∈ Rn.
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Example: Suppose that f : Rn→ Rm is twice differentiable, A ∈ Rn×p and b ∈ Rn. Define
the function g : Rp→ Rm such that

g(x) = f(Ax+ b)

for each x ∈ Rp. Then g is twice differentiable with Hessian

∇2g(x) =AT∇2f(Ax+ b)A

for each x ∈ Rp.

Example: Let X ⊆Rn open, f :X→R twice differentiable and g :R→R twice differentiable.
Define the function h :X → R such that

h(x) = g(f(x))

for each x ∈X. Then h is twice differentiable with Hessian

∇2h(x) = g′(f(x))∇2f(x) +g′′(f(x))∇f(x)∇f(x)T

for each x ∈X.

Big O notation. Here we introduce a type of standard asymptotic notation, restricted to
the case used in the course. Let f,g : N→ R and g(k) positive for k ∈ N large enough. We
write

f(k) =O(g(k))

if there exists a positive integer K ∈ N and positive constant c > 0 such that

|f(k)| ≤ cg(k)

for each integer k ≥K.

Probability theory
The course requires familiarity with basic definitions and results in probability theory. We
recommended any one of the following basic books if you need a refresher:

• (Bertsekas and Tsitsiklis, 2008)

• (Blitzstein and Hwang, 2019)

• (Grimmett and Stirzaker, 2020)

• (Gut, 2009)

• (Wasserman, 2010)

Important keywords are:

Probability spaces.

Distributions.

Random variables.

33



Expected value.

Variance.

Conditional expectation/variance.

Modes of convergence.

Methods of proof
You will have to write proofs in the course. If you are unfamiliar with sound mathematical
arguments we recommended any one of the following basic books:

• (Bond and Keane, 2007)

• (Chartrand et al., 2018)

• (Gerstein, 2012)

• (Hammack, 2018)

• (Houston, 2009)

• (Velleman, 2006)

Important keywords are:

Direct method.

Proof by cases.

Contradiction.

Induction.

Contrapositive method.
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